

DejaVu: Integrated Support for Developing
Interactive Camera-Based Programs

Jun Kato1,2, Sean McDirmid1, Xiang Cao1
1Microsoft Research Asia

Beijing, China
{smcdirm, xiangc}@microsoft.com

2The University of Tokyo
Tokyo, Japan

jun.kato@acm.org

ABSTRACT
The increasing popularity of interactive camera-based
programs highlights the inadequacies of conventional IDEs
in developing these programs given their distinctive
attributes and workflows. We present DejaVu, an IDE
enhancement that eases the development of these programs
by enabling programmers to visually and continuously
monitor program data in consistency with the frame-based
pipeline of computer-vision programs; and to easily record,
review, and reprocess temporal data to iteratively improve
the processing of non-reproducible camera input. DejaVu
was positively received by three experienced programmers
of interactive camera-based programs in our preliminary
user trial.
Author Keywords
Computer vision; development environment.
ACM Classification Keywords
H.5.2 [Information interfaces and presentation]: User
Interfaces - Graphical user interfaces.
INTRODUCTION
Interactive systems beyond desktop computers and
mouse/keyboard input continue to increase in popularity,
where users can use their hand, body, or passive physical
objects to interact with computing devices. At the heart of
many these interactive systems are cameras used to capture
input from the real world that is then interpreted in real-
time by computer vision algorithms. For example, cameras
are used to recognize hand gestures on tabletops [29] and in
the air [25], detect human faces [28], track tangible
implements [3], as well as monitor crowd activity [15].
Moreover, developing these computer-vision-based
interactions has become easier through commercial
products such as Microsoft Kinect (which performs body
skeleton tracking through a depth camera), as well as
software development kits (SDK) of well encapsulated
algorithms.
However, despite the increasing accessibility of camera
hardware and computer vision algorithms, today’s
development environments do not cater to the distinctive
challenges and workflows of developing interactive camera-
based programs. For example, the programmer has to

monitor data in the debugger as discrete textual values
rather than continuous visual representations that more
accurately reflect interactive computer vision data. Such
disconnects illustrate the gulf of execution [22] as a gap
between the programmer’s goal and the available means to
execute it. As a result, programmers can still find it difficult
to develop such programs even if they possess good
computer vision knowledge.

To close this gap, we present DejaVu that enhances
conventional integrated development environments (IDE)
to better support the development of camera-based
interactive programs. This work differs from lower-level
computer vision algorithm libraries such as OpenCV [2], or
rapid prototyping tools for camera-based applications such
as Crayons [7] and EyePatch [16] that are aimed at making
certain computer vision techniques accessible to non-
programmers through a special user interface. Instead our
high-level rationale is similar to Gestalt [23], a general-
purpose development environment for machine-learning
applications, in that we focus on facilitating a general
workflow for current developers of interactive camera-
based programs without limiting them to certain algorithms
or dramatically changing their programming habits. DejaVu
aspires to minimize workflow overhead and draw computer
vision programmers closer to the essence of their program.
More specifically, DejaVu includes two interlinked main
components (Figure 1): a canvas to visually and
continuously monitor the inputs, intermediate results, and
outputs of computer vision processing; and a timeline to
record, review, and reprocess the above program data in a
temporal fashion.

Figure 1: DejaVu Interface.

189

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
UIST’12, October 7–10, 2012, Cambridge, Massachusetts, USA.
Copyright 2012 ACM 978-1-4503-1580-7/12/10...$15.00.

INTERACTIVE CAMERA-BASED PROGRAMS
To help introduce DejaVu, we first explain how today’s
IDEs fall short in supporting the development of interactive
camera-based programs. This knowledge was obtained both
through our own experience (two authors were deeply
experienced in developing such programs) and informal
interviews with three similarly experienced developers. We
first introduce a simple example application named
KinectDress to familiarize readers with interactive camera-
based program basics, and then elaborate on challenges in
their development using today’s environments.

A Representative Example
KinectDress (Figure 2a) is a simple virtual dressing room
application built with the Microsoft Kinect camera, which
provides one color (RGB) image stream and one depth
image stream (of which pixel values correspond to
distances from the camera). The Microsoft Kinect SDK
further uses these inputs to compute a body skeleton of the
user in front of the camera, consisting of 3D coordinates of
20 body joints. With KinectDress, users can see themselves
dressed in various virtual suits on the computer screen. To
start interacting with KinectDress, the user simply walks
within a certain distance in front of the camera (Figure 2b).
The user’s image is dynamically extracted from the
surrounding environment and displayed on a virtual
background, and overlaid with a suit that follows the user’s
position as they walk around (Figure 2c). The user can also
make a swiping hand gesture to cycle through a list of
available suits to wear (Figure 2d).

Figure 2: KinectDress interface and interactions.

We carefully designed KinectDress to represent key
patterns of general camera-based interactive programs in
several aspects:

Interactions. KinectDress includes both the case where the
system continuously changes its state in response to the
user’s current state (e.g., the suit follows the user’s body)
and the case where the user makes an action to be
recognized by the system in order to trigger a command
(e.g., a swiping gesture to change their suit). Most camera-
based interactions can be categorized into these two main
categories.

Program Architecture. KinectDress is typical of most real-
time camera-based systems in that the camera is the sole or

primary source of input, i.e., the camera “drives” the
program. This requires the program to capture and process
image frames continuously, hence dictates a frame-based
loop architecture. Figure 3 illustrates this classic
architecture used in KinectDress. Each iteration of the loop
starts with the camera capturing the next frame, followed by
the pipeline that processes the frame and updates the
system’s logical and graphical state accordingly.

Figure 3: KinectDress program flow.

Processing Paradigms and Components. KinectDress
includes both stateless processing that depends only on the
current frame (e.g., updating the suit position) and stateful
processing that accumulates data over a number of recent
frames (e.g., recognizing swipe gestures); both are common
in interactive computer vision programs. KinectDress also
demonstrates several of the most common processing
components in camera-based interaction such as image
segmentation, geometric transformation, and heuristic
gesture recognition (Figure 3). Finally, KinectDress
illustrates how color, depth, and skeleton data are processed
in combination as common in Kinect programming.

Attributes and Challenges
Several fundamental attributes of interactive camera-based
programs pose challenges for development with today’s
environments:

First, computer vision processing is inherently visual: not
only is the raw camera input a stream of image frames (or
several streams in the case of stereo or depth cameras), but
many of the intermediate processing results are also images
(e.g., segmented user image in KinectDress), or have a
close geometric correspondence with the input images (e.g.,
body skeletons) and so are best understood visually. In this
respect, today’s development environments disregard the
visual nature of this data and display their textual value,
falling short of the programmer’s needs. To ease
development, computer vision programmers often write
temporary code to visualize some of this data themselves in

P
ro
ce
ss
 F
ra
m
e
D
at
a

Camera captures frame

Distance between user and
camera < threshold Dt ?

Render application graphics

Segment user’s image based on depth data

Update virtual suit’s position and size

Switch to next virtual suit in the list

Based on the most recent n frames,
recognize whether there is a swipe gesture?

Yes

Yes

No

No

190

the application user interface, which is both cumbersome
and not scalable.

Second, the inputs of most camera-based interactive
applications are continuous: the program constantly
receives and processes real-time input from the camera,
updating intermediate results and final outcomes on a
frame-by-frame basis. Such processing continues even
when no user actions are occurring, e.g., KinectDress
constantly monitors whether there is a user within a certain
range. In addition, many user actions, especially gestures,
do not happen at a single point in time but rather span
multiple contiguous frames. However, today’s development
environments are usually designed to trace discrete user
input events, and programmers cannot directly inspect the
temporally continuous dataflow of camera-based programs.
For example, debugging using breakpoints can be
problematic since they inevitably interrupt the temporal
continuity of live input.

Third, camera-based input is mostly non-reproducible:
input is formed by dynamically observing the real world
and often human behavior. Compared to mouse-and-
keyboard programs where the programmer can easily
reproduce a certain input sequence (even through an
automated script) to test them, the dependency on dynamic
real world input in camera-based interactions means that it
is not only cumbersome but also often impossible to
reproduce certain input. For example, a human user can
never perform the same action, such as KinectDress’s
swiping gesture, twice precisely the same way. Other
factors such as lighting, environment setup, and even noise
in the camera sensor, may also result in different inputs and
cause different outcomes. Such non-reproducibility poses a
serious obstacle to testing and tuning interactive computer
vision programs in today’s IDEs.

Finally, developing computer vision programs is often an
iterative process. The stochastic nature of camera input
from the real world along with the somewhat obscure nature
of many computer vision algorithms means that predicting
the exact outcome of a certain computer vision algorithm is
often difficult. Furthermore, given the complexity of real
world input, the correctness or quality of a computer vision
program’s output is often up to the programmer’s subjective
judgment (e.g., whether a suit’s position and size matches
the user’s body in KinectDress). For these reasons,
computer vision programmers more often “tune” an
algorithm rather than “debug” it. As a result, developing
computer vision programs often involves a great deal of
trial-and-error with real world input, such as revising the
algorithm, adjusting its parameters (e.g., distance threshold
Dt in Figure 3), or comparing multiple variations of the
algorithm to find configurations that yield satisfactory
behavior. In some cases, this process needs to be repeated
when the system is used in a new environment or for a new
user group. The need to repeatedly acquire dynamic real
world input makes such iterations and comparisons
cumbersome and unreliable.

DEJAVU
DejaVu enhances an IDE to reflect the visual and
temporally continuous nature of interactive camera-based
programs, and to accommodate non-reproducible real world
input as well as an iterative development processes. DejaVu
is prototyped as an extension to SharpDevelop [26], which
is a general-purpose open-source IDE for Microsoft .NET
development. DejaVu preserves the full flexibility of the
development platforms and patterns developers currently
use to write interactive camera-based programs. The only
assumption made is that the program follows the previously
mentioned canonical frame-based loop architecture where
all input and output are synchronized to frames - we do not
readily support multi-threaded asynchronous programs,
which are nonetheless highly uncommon in real-time
camera-based interactions. Without loss of generality, the
prototype currently interfaces with a Kinect camera (which
may also be used as a regular RGB camera), while
extending support for other camera types is straightforward.
The DejaVu interface (Figure 1) consists of two tightly
interlinked components: the canvas and the timeline.

Figure 4: DejaVu Canvas.

DejaVu Canvas
Reflecting the continuous and visual nature of camera input
and processing, the canvas (Figure 4) allows the
programmer to continuously monitor any number of
variables during run-time in an arbitrary layout. For data
types that are inherently visual (most notably image and
body skeleton), the variable values are automatically shown
in their appropriate visual form. To add a variable to
monitor, the programmer simply selects it in the code editor
and drags it onto the canvas. A display box representing the
variable value then appears as labeled by the variable name,
which can be freely repositioned through dragging, or
deleted when no longer needed. In addition to variables,
available types of input from the camera (in the case of
Kinect: color, depth, and skeleton) as well as the rendered
application window can be inserted into the canvas via a
checkbox. The above actions together allow the
programmer to monitor any input, intermediate result, or
output of the program.

The canvas always reflects variable values at the current
frame of interest (FOI). When the program is running with
live input from the camera, this is simply the latest frame
that has just been captured and processed. Unlike
conventional debug watch tables in which the variable
values are only updated when the program reaches a break,

191

the canvas is constantly updated at every new frame so the
values can be continuously monitored in real time. When
the program is not running with live input, the FOI is
dependent on the cursor position in the timeline as
explained in the next section. In the case that a variable in
the canvas has an undefined value in the FOI (e.g., the
variable is declared within a conditional branch that is not
reached), its display is blank.

The canvas is updated at the granularity of a frame to
reflect the frame-based nature of interactive computer
vision processing. However, there may be cases where a
variable is assigned to values multiple times during the
processing of a single frame, which often happens when the
programmer applies an image processing filter (e.g.,
Gaussian blur filter) or transformation (e.g., transforming
between color spaces) to an image in place, i.e., the result is
assigned to the same variable that represents the source
image. The canvas maintains a record of not only a
variable’s name but the source position in the code editor
where it was dragged from, and inspects the variable’s
value just after it is evaluated at that position. In doing so,
the programmer can monitor a variable’s value at a specific
stage in the processing pipeline, or even simultaneously
monitor its values at different stages within the same frame
by adding the variable to the canvas several times from
different positions (Figure 5).

Figure 5: Variable values in the canvas depend on their

source positions in the code editor.
Along with displaying variables, the canvas also allows the
programmer to freely write or draw on it using a stylus or a
mouse to further aid in the thought process of handling
visual data. In addition to the obvious use for annotating
variables, freehand drawing enables other powerful use
cases: by combining static sketches such as algorithm
flowcharts with data displays, the programmer can turn the
canvas into a “dynamic sketchbook” where sketches come
to life with dynamic data. The programmer can then inspect
the program dataflow and pipeline on a higher semantic
level, providing a more vivid way of conceptualizing and
iterating on algorithms. On the other hand, in contrast to
visual dataflow authoring tools such as Max/MSP [17], this
usage remains lightweight and flexible, and does not dictate
literal correspondence between the sketch and program.
Alternatively, the programmer may make a coarse sketch of
their application UI on the canvas and populate it with data
displays to use it as a low-fidelity interactive prototype in
lieu of the actual application user interface, which is
reminiscent of research on sketch-based prototyping [14].

DejaVu Timeline
The timeline (Figure 6) presents program data recorded or
recalculated from historical program sessions. A list of all

available program sessions is shown to the right of the
timeline as horizontal bars, with their visual length
proportional to their temporal duration. Program data in the
currently selected session is visualized in the timeline in a
style similar to that found in common video editing
software such as Windows Movie Maker, where a cursor
indicates the current FOI in the timeline. The timeline may
consist of multiple data streams (rows), each corresponding
to a variable, input, or output that is displayed on the
canvas. Streams of visual data are represented as strips of
frame thumbnails along the timeline, while a stream of
numerical or Boolean data is visualized as a time-graph.

 Figure 6: DejaVu Timeline.

The programmer may either review past sessions, or start a
live session by running the program with live camera input.
DejaVu employs a unified notion of “playing” the session
for both cases. To start a live session, the programmer
selects the “Live” icon at the bottom of the session list, and
clicks the “Play” button. All variables shown on the canvas,
along with all available types of live camera input and the
rendered application window (regardless of whether they
are being monitored on the canvas) are recorded and time-
stamped as the program runs. The timeline is populated in
the meantime. To stop program execution, the programmer
clicks the “Stop” button, and the live session is finished and
added to the list of past sessions. Note that the programmer
does not need to explicitly trigger program data recording,
which happens automatically whenever the program is
running live so there is never a risk of missing valuable data
or moments.

To review a past session, the programmer selects it from the
session list to show it in the timeline. They can then either
freely navigate the cursor to an arbitrary frame by clicking
on it, or replay the session continuously from the cursor
position using the “Play” button. Playing by default
happens at the same speed as the original live program, i.e.,
“real-time”, but can also be sped up or slowed down
according to the programmer’s needs using a slider. When
the current session finishes playing, the next session in the
list is automatically selected and starts playing. In any case,
the canvas always updates and displays the recorded data in
the current FOI. When replaying, the recorded application
window output is also shown in a separate window,
emulating the live program execution experience. An
existing session may be duplicated, split into two at any
given point, repositioned in the list, or deleted to allow
trimming and reorganizing the sessions.

The ability to visually review both past sessions and recent
live input in the timeline with all relevant program data

192

addresses the non-reproducibility challenge of interactive
camera-based input, and eases the identification and
analysis of noteworthy events. The seamless transition
between live input and reviewing also allows for the fast
recognition and examination of events. When the
programmer notices some anomaly while testing with live
input, they can immediately switch to reviewing the session
to deeply analyze it.

The power of the timeline lies beyond passive review, and
in the ability to revise the program and refresh program
data by reprocessing recorded input streams, which
naturally serves the iterative development process of
interactive camera-based programs. After revising their
program, the programmer clicks the “Refresh” button so the
program is re-executed in the background to recalculate the
monitored variable values for all existing sessions in
sequence. Sessions and frames are colored green when they
are refreshed and ready for reviewing; those yet to be
refreshed are colored gray. The refresh functionality allows
the programmer to reliably examine the effect of their
program revision by comparing to previous outcomes on
the exact same input. Finally, the programmer can add
variables to the canvas which have not been recorded
previously; the sessions will be refreshed to include the new
data streams in their timelines.

Example Use Case
We now use the previously described KinectDress
application to concretely illustrate how DejaVu can be used
by programmers in their workflow.

The programmer’s first challenge is to fine tune the distance
threshold Dt that determines how close the user should be in
front of the camera to trigger the interaction (the program
starts displaying the virtual stage to reflect this). Today’s
programmers usually need to go back and forth several
times between adjusting the parameter on the computer, and
standing up and walking towards the camera to test the
effect until finally satisfied – a very cumbersome and tiring
process. With DejaVu (Figure 7), the programmer can add
the userDistance variable (calculated as the average depth
of all body skeleton joints) to the canvas, and monitor its
value on the computer screen as they walk from afar
towards the camera (only once). When they reach a
comfortable distance, they can read the current
userDistance value on the screen (displayed in a big font
for readability from afar), and use this value as a hint for
setting the threshold.

Alternatively, the programmer can raise a hand to indicate
that they are at a comfortable distance, which is easy to
visually identify in the color input stream. Later they can
iteratively adjust the threshold in the program code and
refresh program data, so that the starting moment of the
virtual stage (as seen in the application window stream)
aligns with the indication action (as seen in the color input
stream) in the timeline.

The programmer next needs to extract the user’s image
from the color input. This segmentation algorithm involves

first finding the farthest point among the skeleton joints
whose depth value is then used to threshold the depth input
image. The resulting binary mask is applied to the color
input to segment the user from the surrounding environment.
The programmer can use freehand sketch together with data
displays on the canvas to help conceptualize this slightly
complex pipeline (Figure 4). Further, to remove some
excessive pixels in the binary mask, the programmer may
try applying an erosion filter to it. The ability to monitor the
same variable’s values at different code positions then
allows both the original mask and the eroded mask to be
monitored and compared simultaneously without confusion.

Figure 7: Tuning the distance threshold.

Next, to overlay the suit on the user’s image so that it
accurately tracks the user’s body in position and size, the
programmer can fine tune the geometric transformation
parameters for the suit picture using both live and recorded
input, similarly to how they adjusted the distance threshold
in the first step.

Finally, the programmer attempts the gesture recognition
algorithm for swiping, which requires observing the user’s
skeleton over a number of frames to identify the movement.
Two simple heuristic algorithms come to the programmer’s
mind, one based on the change of the hand’s horizontal
position, the other on the change of the elbow joint angle.
Being unsure of which option will work better, the
programmer implements both to compare their performance
on real world input. Figure 1 illustrates how they use the
canvas to monitor the skeleton input, hand position, and
elbow angle, as well as the recognition results of both
algorithms as Boolean variables. Accounting for variability
in real world input, they perform the gesture many times.
Once done, they immediately have a visual overview in the
timeline of how well each algorithm performs
comparatively. They can easily identify cases where either
or both fail by skimming the color input and recognition
result streams, and then diagnose the cause by examining
the corresponding temporal trends in the variables that the
algorithms are based on, i.e., hand position or elbow angle.
They can also later use the basic session editing functions to
clean and trim these sessions to focus on the most relevant
gesture samples.

Moreover, to accommodate individual differences between
users, the programmer can ask others to trial use the
program and collect gesture samples for further analysis

193

and improvement of the algorithms. Such batch
(re)processing and visualization of multiple recorded
sessions are seamlessly integrated in the DejaVu workflow.

Implementation
DejaVu is implemented in C# based on the existing
SharpDevelop IDE. A custom-built thin wrapper API
around the Microsoft Kinect SDK acts as the shared
medium between the DejaVu components, the
programmer’s code, and the Kinect camera. The wrapper
allows the programmer to access Kinect input and
capabilities in an API interface similar to that of the Kinect
SDK, while at the same time allows the DejaVu
components to track and record Kinect input. The wrapper
also allows DejaVu to switch between feeding live and
recorded Kinect input streams to the programmer’s code via
the same programming interface so that the programmer
only needs to program for live input. The program naturally
follows the frame-based loop architecture by performing
frame data processing within a KinectFrameReady event
handler, which is synchronously generated via the wrapper.

DejaVu’s continuous monitoring and recording of variable
values is achieved by transparently inserting tracing
function calls into the programmer’s code during
compilation at positions where variables are dragged from
onto the canvas, which allows for DejaVu’s position-aware
variable monitoring capability. Code change in the program
are tracked by the code editor and handled during
compilation to maintain reference to variables and
consistency between canvas/timeline and the code.

Although DejaVu currently supports a finite set of types in
terms of data visualization, its architecture is extensible
enough so that additional types could be supported in a
third-party extension model.

USER FEEDBACK
To gain early feedback about the concept and functionality
of DejaVu from target users, as opposed to lower-level
usability or technical performance, we invited three
professional developers to trial DejaVu. They all had
significant experience in developing interactive Kinect-
based programs using the mainstream Microsoft Visual
Studio IDE. Each participant was first introduced to
DejaVu’s concept and interface and then asked to use it in
the development of a simple interactive program. The
program idea was proposed by the participant based on
their past experience and generally consisted of a single
processing component that can be used in higher-level
applications. These included a program to track the object
held in the user’s hand, a program to shift the user’s image
to the center of the screen, and a program to detect whether
the user’s left, right, or both hands are raised.

Given the open-endedness of the programming tasks, and
because we were interested in subjective feedback rather
than quantifiable productivity at this proof-of-concept stage,
we did not enforce the participant to complete the program.
Instead the participant worked for an hour regardless of the
progress. The participant was asked to raise any feedback

they may have during the trial, and was afterwards
informally interviewed about their experience and opinions.
One participant successfully completed his program in one
hour while the other two reached a stage that the substance
of the program was ready and needed refinement; both were
comfortable leaving the program for later work at that point.

All participants were very positive about DejaVu. They all
agreed that it is very useful for developing interactive
camera-based programs (“This IDE is very interesting and
useful, awesome.”), and it matches well with their current
workflow in developing such programs. Participants found
that the canvas was an indispensable component and
cherished the ability to continuously “see immediate result”
of variable values. They were particularly fond of the direct
drag-and-drop interaction to add a variable onto the canvas,
and found the capability for the data display to be sensitive
to the variable’s source position “very impressive”.

The timeline and its associated recording, reviewing, and
reprocessing functionalities immediately resonated with the
participants, and were seen as the core competency of
DejaVu. One participant described it well: “(in the past) I
just want to check one value, but maybe need to walk
around many times… (with DejaVu) no need to run back
and forth… it'll save us lots of time to debug this.” Indeed,
similar capabilities had been desired by the participants,
even to the point of making their own attempts. One
participant used a separate toolbox to record and replay
Kinect input data, while another participant wrote his own
program to do this. However they both agreed that these
separate recording functions were not nearly as powerful
and flexible as the visual, integrated, and interactive
support in DejaVu. The fact that the timeline is “pretty
much like video making tool like Movie Maker” was also
seen as a reassuring factor.

More importantly, the inseparable link between the canvas
and the timeline defines the DejaVu development
experience. Both were seen as complementary to each other,
e.g., “the canvas shows the dynamic data” and “the timeline
provides the alignment of the changing moment”, and the
synchronous connection between the two was seen as “the
best advantage”.

Participants made valuable suggestions on how to further
improve DejaVu. Beyond lower-level UI and technology
polishing, particularly noteworthy are the following:

Simulating and Manipulating Input. It is not always easy to
collect input from the programmer’s surroundings that
satisfies specific realism, precision, diversity, or quantity
requirements necessary for program testing. Participants
suggested adding the ability to import simulated or
prerecorded input such as videos [cf. 4, 21], and to
manually or algorithmically manipulate existing real world
input such as skeletons.

Visualizing Generic Arrays. Beyond visualizing image data,
participants suggested that other array data could benefit as
well from compact and intuitive visualization in the form of
an image for convenient monitoring and reviewing. The

194

ability to visualize arbitrary arrays as images would be a
nice enhancement for the canvas and the timeline.

Composite Visualization. Through freehand sketches and a
programmer-defined display layout, the canvas can support
the conceptualization of program dataflow beyond
individual data displays. Participants suggested going
further by compositing multiple data displays into a higher-
level visualization that could range from simple graphic
combinations such as overlaying the skeleton on the color
image, to more semantic compositions such as masking
certain regions of an image. However, in the meanwhile we
should also be cautious to preserve the central role of the
program code in general-purpose data processing.

RELATED WORK
Supporting Applications of Computer Vision
A great deal of previous work endeavor to make employing
computer vision for real world applications easier. Several
systems aim to make design and prototyping computer
vision techniques accessible to non-programmers. For
example, Crayons [7] is a design tool that allows users to
train image segmentation classifiers using a coloring
metaphor, which are then used to prototype interactions.
Similarly, Eyepatch [16] supports prototyping camera-
based interactions through examples where users train
various classifiers and then connect their live outputs to
other prototyping tools such as Flash. Concerning more
specific application domains, the Papier-Mâché toolkit [13]
supports building tangible user interfaces through computer
vision, barcodes, and electronic tags; and users of
CAMBIENCE [5] can map motions detected by the camera
into various sound effects. In contrast to this category of
work, DejaVu targets typical programmers and general-
purpose interactive camera-based programs by supporting a
canonical development workflow rather than individual
computer vision components, and preserves the full power
and flexibility of standalone computer vision programs.

On the other hand, several software libraries of lower-level
computer vision algorithms, such as OpenCV [2] and
XVision [9], can readily be leveraged by programmers in
their programs. DejaVu fulfills a complementary need, and
may be used together with these libraries seamlessly.

Prototyping and Development Tools for Other Domains
In addition to computer vision, rapid prototyping tools also
exist for other domains, such as sensor-based interactions
that are especially relevant to our work. In specific, d.tools
[11] integrates the design, test, and analysis of physical
prototypes including sensors, while also providing a visual
programming environment for authoring control flow.
Exemplar [10] supports the authoring of sensor-based
interactions by demonstration. Both d.tools and Exemplar
include functionality to capture and visualize temporal
sensor data and interface states, which is somewhat similar
to the DejaVu timeline. Further, RePlay [21] and FauxPut
[4] both support the recording and replaying of sensor input
traces for the purpose of testing prototypes. To support
mainstream development instead, DejaVu seamlessly

integrates these concepts into a general-purpose
development environment, extends them to flexibly support
arbitrary data variables in the program, and further enables
timeline refresh based on iterative program revisions.

Also worth noting is Gestalt [23], a general-purpose
development environment that supports the development of
machine learning applications. Gestalt shares our design
rationale by supporting a general workflow (implementation,
analysis, and easy transitions between the two) for machine
learning rather than focusing on individual algorithms.
Further, the connection between DejaVu and Gestalt could
go beyond this philosophical similarity. As apparent in the
various computer vision prototyping tools [7, 16]
mentioned above, machine learning is an important element
of many computer vision algorithms. DejaVu focuses on the
distinctive challenges of interactive computer vision;
however, future work could consider how aspects of both
systems would be combined to support a more
comprehensive development process.

General Programming and Debugging Support
DejaVu is also related to general programming and
debugging research. DejaVu can record, review, and
reprocess input, intermediate results, and program output,
which resonates with a long thread of research on temporal
debugging where programmers can examine the program
state at various points of time in the past. Initially explored
in EXDAMS [1], its first graphical example appears in
PROVIDE [20] and more recent work includes TOD [24]
and URDB [27]. Most relevant to our work is liblog [8], a
replay debugging tool for distributed applications that share
some of the non-deterministic nature of camera-based
applications. These systems focus on tracing and reverse-
stepping of individual discrete statements, and do not
accommodate or exploit the intrinsic frame-based
processing pipeline in interactive camera-based programs
as DejaVu does.

Another key capability of DejaVu is to continuously
monitor the program data in a visual fashion. The GNU
Data Display Debugger (DDD) [30] allows data structures
to be visualized as graphs, while Microsoft Visual Studio
[19] allows programmers to create custom visualizers of
data types (e.g., images) that can be viewed in the debugger.
However, these visualizations are built into conventional
discrete-step debugging environments and are not updated
continuously during program execution.

DejaVu’s ability to revise the program and reprocess the
input may also remind of research on live programming
such as SuperGlue [18] and Subtext [6], where the program
is continuously and immediately responsive to any edits in
the code. Although DejaVu does not yet provide such a live
programming experience, we see this as a promising future
direction to further facilitate the iterative development of
camera-based programs. Motivated by a similar need,
Juxtapose [12] provides an alternative approach that allows
the simultaneous testing of multiple program variations,
potentially with the same input. Compared to Juxtapose,

195

DejaVu is more suited to the iterative development and
testing process where developers incrementally extend and
improve their code over time.

DISCUSSION AND CONCLUSION
DejaVu focuses on supporting real-time interactive
programs. Note that non-real-time camera applications,
where the user sporadically collect camera input to process
in an offline fashion (e.g., QR code reader), are more akin
to traditional programming in architecture and workflow,
hence do not necessarily require the same special support
and are out of the scope of this work.

DejaVu builds on the continuous frame-based update model
that reflects the distinctive needs of real-time interactive
camera-based programs, and is profoundly different from
the conventional discrete step-based debugging model.
However, these two models are not necessarily mutually
exclusive. Especially when reviewing and reprocessing
recorded program data, where there is no concern of
interrupting real-time input, we may consider combining
these two models to allow stepwise tracing within a frame
at statement granularity where needed.

Although DejaVu is a domain-specific tool for camera-
based programs, other types of sensor-based interactions or
frame-based programs (e.g., games) may share some of
their previously mentioned attributes. DejaVu indeed shares
some characteristics with existing sensor-based prototyping
tools. It is worthwhile to consider how DejaVu’s concepts
can be generalized to these other domains.

In conclusion, DejaVu provides enhanced integrated
support that tightly matches the distinctive nature and
workflow of developing interactive camera-based programs.
It has been positively received by representative target
users, and is a timely exploration facing today’s wide
adoption of camera-based interactions.

REFERENCES
1. Balzer, R. (1969). EXDAMS: extensible debugging and

monitoring system. Spring joint computer conference, p.
567-580.

2. Bradski, G. (2000). The OpenCV Library. Dr. Dobb’s
Journal November 2000, Computer Security.

3. Cao, X., Balakrishnan, R. (2003). VisionWand: interaction
techniques for large displays using a passive wand tracked
in 3D. UIST, p. 173-182.

4. Cardenas, T., Bastea-Forte, M., Ricciardi, A., Hartmann,
B., Klemmer, S. (2008). Testing physical computing
prototypes through time-shifted & simulated input traces.
UIST adjunct proceedings.

5. Diaz-Marino, R., Greenberg, S. (2006). CAMBIENCE: A
Video-Driven Sonic Ecology for Media Spaces. Video
Proceedings of CSCW.

6. Edwards, J. (2005). Subtext: Uncovering the simplicity of
programming. OOPSLA, p. 505–518.

7. Fails, J., Olsen, D. (2003). A design tool for camera-based
interaction. CHI, p. 449-456.

8. Geels, D., Altekar, G., Shenker, S., Stoica, I. (2006). Replay
debugging for distributed applications. USENIX, p. 289-300.

9. Hager, G. D., Toyama, K. (1998). X Vision: A portable
substrate for real-time vision applications. Computer Vision
and Image Understanding, 69(1), p. 23-37.

10. Hartmann, B., Abdulla, L., Mittal, M., Klemmer, S. R.
(2007). Authoring sensor-based interactions by
demonstration with direct manipulation and pattern
recognition. CHI, p. 145-154.

11. Hartmann, B., Klemmer, S. R., Bernstein, M., Abdulla, L.,
Burr, B., Robinson-Mosher, A., Gee, J. (2006). Reflective
physical prototyping through integrated design, test, and
analysis. UIST, p. 299-308.

12. Hartmann, B., Yu, L., Allison, A., Yang, Y., Klemmer, S.
R. (2008). Design as exploration: creating interface
alternatives through parallel authoring and runtime tuning.
UIST, p. 91-100.

13. Klemmer, S. R., Li, J., Lin, J., Landay, J. A. (2004). Papier-
Mache: toolkit support for tangible input. CHI, p. 399-406.

14. Landay, J. and Myers, B. (1995). Interactive sketching for
the early stages of user interface design. CHI, p. 43-50.

15. Maynes-Aminzade, D., Pausch, R., Seitz, S. (2002).
Techniques for interactive audience participation. ICMI, p.
15-20.

16. Maynes-Aminzade, D., Winograd, T., Igarashi, T. (2007).
Eyepatch: Prototyping Camera-based Interaction Through
Examples. UIST, p. 33-42.

17. Max/MSP. Cycling '74.
http://cycling74.com/products/maxmsp

18. McDirmid, S. (2007). Living it up with a live programming
language. OOPSLA, p. 623-638.

19. Microsoft Visual Studio Visualizers.
http://msdn.microsoft.com/en-us/library/zayyhzts.aspx

20. Moher, T. G. (1988). PROVIDE: a process visualization
and debugging environment. IEEE Transactions on
Software Engineering, 14(6), p.849-857.

21. Newman, M. W., Ackerman, M. S., Kim, J., Prakash, A.,
Hong, Z., Mandel, J., Dong, T. (2010). Bringing the field
into the lab: supporting capture and replay of contextual
data for the design of context-aware applications. UIST, p.
105-108.

22. Norman, D. A., Draper, S. W. (1986). User centered system
design; new perspectives on human-computer interaction.
L. Erlbaum Assoc. Inc.

23. Patel, K., Bancroft, N., Drucker, S. M., Fogarty, J., Ko, A.
J., Landay, J. (2010). Gestalt: integrated support for
implementation and analysis in machine learning. UIST, p.
37-46.

24. Pothier, G., Tanter, E., Piquer, J. (2007). Scalable
omniscient debugging. SIGPLAN, p. 535-552.

25. Segen, J., Kumar, S. (1998). Gesture VR: Vision-based 3D
hand interface for spatial interaction. Multimedia. p. 455-464.

26. SharpDevelop.
http://www.icsharpcode.net/opensource/sd/

27. Visan, A., Arya, K., Cooperman, G., Denniston, T. (2011).
URDB: a universal reversible debugger based on
decomposing debugging histories. PLOS, p. 1-5.

28. Wang, S., Xiong, X., Xu, Y., Wang, C., Zhang, W., Dai, X.,
Zhang, D. (2006). Face-tracking as an augmented input in
video games: enhancing presence, role-playing and control.
CHI, p. 1097-1106.

29. Wilson, A. D. (2005). PlayAnywhere: a compact interactive
tabletop projection-vision system. UIST, p. 83-92.

30. Zeller, A., Lütkehaus, D. (1996). DDD - a free graphical
front-end for UNIX debuggers. SIGPLAN Notices, 31(1),
p. 22-27.

196

