
Rethinking Programming “Environment”
Technical and Social Environment Design toward Convivial Computing

Jun Kato
jun.kato@aist.go.jp

National Institute of Advanced Industrial Science and
Technology (AIST), Japan

Keisuke Shimakage
keisuke_shimakage@otonglass.jp

OTON GLASS, Inc., Japan

ABSTRACT
Computers have become ubiquitous in our life and work, and the
way that they are built and used needs to be fundamentally im-
proved. Most of the prior effort has been aimed at improving the
programming experience for people with specific technical back-
grounds (e.g., programmers, end-users, data scientists). In contrast,
throughout this paper, we discuss how to make programming ac-
tivities more inclusive and collaborative, involving people with di-
verse technical backgrounds. We rethink the programming envi-
ronment from both technical and social perspectives.

First, we briefly introduce our previous technical effort in which
the programming environment is shared between the developers
and users of programs, eliminating the distinction between pro-
gramming and runtime environments and fostering communica-
tion between them. Second, we introduce our social effort to sup-
port peoplewho are visually impaired in implementing customized
smart glasses that read words with a camera and speakers. We
design their programming environment to consist of a software/
hardware toolkit and engineerswith domain expertise called “evan-
gelists.”

Learning from these experiences, we discuss several perspec-
tives on convivial computing. To conclude, we argue that both tech-
nical innovations made on user interfaces for programming and
understanding on the socio-technical aspect of domain-specific ap-
plications are critical for the future of programming environments,
and accordingly, convivial computing.

CCS CONCEPTS
• Software and its engineering → Integrated and visual de-
velopment environments; Collaboration in software devel-
opment; • Social and professional topics → Socio-technical
systems; •Human-centered computing→Human computer in-
teraction (HCI).

KEYWORDS
convivial computing, programming environments, programming
experience, live programming, social coding

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of a national govern-
ment. As such, the Government retains a nonexclusive, royalty-free right to publish
or reproduce this article, or to allow others to do so, for Government purposes only.
<Programming’20> Companion, March 23–26, 2020, Porto, Portugal
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7507-8/20/03…$15.00
https://doi.org/10.1145/3397537.3397544

ACM Reference Format:
Jun Kato and Keisuke Shimakage. 2020. Rethinking Programming “Environ-
ment”: Technical and Social Environment Design toward Convivial Com-
puting. In Companion Proceedings of the 4th International Conference on the
Art, Science, and Engineering of Programming (<Programming’20> Compan-
ion), March 23–26, 2020, Porto, Portugal. ACM, New York, NY, USA, 9 pages.
https://doi.org/10.1145/3397537.3397544

1 INTRODUCTION
In 2011, Marc Andreessen noted “software is eating the world [2].”
Computers have become more and more ubiquitous, and there are
more and more programs running around us in our life and work.
As a consequence, there are expectations for developers of pro-
grams to take more responsibility than ever. Within such a context,
what is a programming environment, for whom is it, and how can
we improve it to address this issue?This paper starts with this sim-
ple question.

When computer scientists refer to the term “programming envi-
ronment,” it usually means a computational environment in which
a set of tools for developing programs is prepared for immediate
use. A modern programming environment is often called an “in-
tegrated development environment” (IDE). It has not been called
a “programmers’ environment,” and, therefore, nothing prevents
it from being used by a wider variety of people. In a broader con-
text, an environment is “the surroundings or conditions in which
a person, animal, or plant lives or operates [25]” and could be de-
signed to include non-computational artifacts, such as people who
collaborate.

As we will introduce in the Background section, prior effort in
the computer science-related research field has been mostly about
making a programming environmentmore efficient for peoplewith
a specific technical background.The aimhas typically been improv-
ing the overall programming experience for either programmers
or end-users. As some programming activities heavily rely on do-
main specificity, there are recent and ongoing efforts to provide
domain-specific programming experiences, for instance, for data
scientists and artists. Regardless of this spectrum, from general to
domain-oriented programming environments, environments are
usually designed independently for people with a specific back-
ground.

On the contrary, as pointed out by Fischer, “although creative
individuals are often thought of as working in isolation, the role of
interaction and collaboration with other individuals is critical to
creativity [9].” Through our effort, we aim at designing a program-
ming environment in which people from diverse technical back-
grounds gather and express their creativity. Such diversity is con-
sidered to be a vital source for social creativity, which was once

https://doi.org/10.1145/3397537.3397544
https://doi.org/10.1145/3397537.3397544

<Programming’20> Companion, March 23–26, 2020, Porto, Portugal Jun Kato and Keisuke Shimakage

������

�����������
��� �����
���������
���

jumpCoeff = 0.3;

loop() {

 if (isJumping)

 y += jumpCoeff*v;

}

��
����
�����

Figure 1: Conventionally, programming environments are usually separated from runtime environments. Users do not have
access to source code and cannot edit programs to fit their needs.

examined in the context of end-user development [11] to realize
“convivial” tools and systems as defined by Illich [13].

As concrete examples, we introduce our previous technical ef-
fort [15, 17] and ongoing social effort to rethink the programming
environment tomake it bothmore inclusive and collaborative. First,
we introduce our previous technical effort in which the program-
ming environment is shared between the developers and users of
programs, eliminating the distinction between programming (bu-
liding) and runtime (using) environments and fostering commu-
nication between them. Second, we introduce our social effort to
support people who are visually impaired in implementing cus-
tomized smart glasses that read words with a camera and speak-
ers. We design their programming environment to consist of a soft-
ware/hardware toolkit and engineers with domain expertise called
“evangelists.” Learning from these experiences, we discuss several
perspectives on convivial computing. To conclude, we argue that
both technical innovations made on user interfaces for program-
ming and understanding on the socio-technical aspect of domain-
specific applications are critical for the future of programming en-
vironments, and accordingly, convivial computing.

2 BACKGROUND
2.1 Respective Support for

Programmers/End-users/Novices
To address the issue of there being a shortage of program develop-
ers, there have been prior research efforts toward supporting dif-
ferent kinds of developers. Roughly speaking, there are three areas.
First, research on programming languages, software engineering,
and human-computer interaction has developed general program-
ming languages and environments to increase the productivity of
existing programmers. Research projects such as Natural Program-
ming [24] fall into this category. Second, most research on end-
user programming has developed tools for people without prior
knowledge of programming to take advantage of programming
through domain-specific user interfaces. Recent relevant projects
include End-user Software Engineering with a focus on testing and
debugging experience [4]. Third, Computer Science for All [6] and
other political efforts have taken place to increase the number of

developers in the future. One can observe the growth of the re-
search community in computer science education in the contin-
ually increasing number of accepted papers and attendees to the
annual SIGCSE conferences [1].

These prior efforts improve the independent programming ex-
perience and typically do not affect how software programs are
developed, distributed, and used. Programming environments are
designed differently from runtime environments as shown in Fig-
ure 1, and the lifecycle of the programs is divided into build time
and use time. Once programmers complete the development pro-
cess in their programming environment and publish the program,
users can run but edit it in their runtime environment.

In contrast, our approach is to implement a shared environment
between programmers and users. It supports groups comprised of
different kinds of people, not limited to programmers, to increase
productivity as a whole, which Fischer defined as “social creativ-
ity [9].”The programs in such an environment are never considered
as the final products but rather something unfinished that keep
evolving in response to a variety of users’ needs.

2.2 Domain-specific Programming Experience
As people use programs for various purposes, there is an increasing
number of domain-specific programming languages and environ-
ments.Themost notable recent examples include those for data sci-
entists, including Jupyter Notebook (formerly named the “IPython
Notebook” [26]) and other literate programming platforms, and
one prior work investigated their usage [22]. Also, artists write
programs for artistic purposes. Live coding is an activity in which
musical and graphical performances are improvised in front of an
audience while showing the code editor to them [7]. Generative
design is an iterative process in which artists generate a variety of
design alternatives using programs, choose desirable parameters,
and look for a favorable design. Example systems that support gen-
erative design include Houdini [29], TextAlive [19], and Para [14].

In contrast to conventional programming environments that put
much focus on text-based user interfaces, these domain-specific
programming environments need to handle more data-intensive
workflows and come with more graphical user interfaces [18]. We
follow the same path of improving user interfaces of programming
environments but for supporting communication between program-
mers and non-programmers.

Rethinking Programming “Environment” <Programming’20> Companion, March 23–26, 2020, Porto, Portugal

������

�����������
��� �����
���������
���

jumpCoeff = 0.3;

loop() {

 if (isJumping)

 y += jumpCoeff*v;

}

�����������

Jump:0.1

Figure 2: In our technical effort, we designed runtime environment that is same as programming environment except for its
dedicated graphical user interfaces.

2.3 Live Programming
Live programming is an emerging paradigm for programming en-
vironments that enables interactive edits of programs without los-
ing the context. Since it allows for fluid mode switch between the
building and use of programs, it can be a technical platform for
distributing applications on which the user can seamlessly become
a developer. TouchDevelop [3] was one such example that allows
the user to pause any running program, navigate to relevant pieces
of code, and edit them. Scratch on the Web provides a similar ex-
perience to “remixing” existing programs [12]. Codestrates [27] is
a web-based literate programming environment with support for
real-time collaboration, enabling live programming of web appli-
cations.

Live programming environments have the potential to eliminate
the gap between the user and developer technically. However, they
still require the user to have the same level of expertise in pro-
gramming as the original program developer. Therefore, the user
still needs to spend time on learning programming to benefit from
such an underlying technical platform. We will introduce relevant
interaction design to expand the benefits of live programming to
non-programmers.

3 RUNTIME ENVIRONMENT AS
PROGRAMMING ENVIRONMENT

A runtime environment, in general, refers to an environment in
which users run built programs, and it is different from a program-
ming environment. A runtime environment cannot be used tomod-
ify program specifications, and the users need to ask for the devel-
opers’ help. The programming environment is not for the users,
and the developers need to leave it to collect feedback from the
users.

These days, social coding platforms and bug reporting services
support communication and fill the gap between the two environ-
ments. However, since users are running optimized programswith-
out much information for debugging, reported issues often lack
context information, and to provide context information, the users
need to follow a tedious process.

To address the issue, we considered providing a full-fledged pro-
gramming environment to users with dedicated user interfaces for
them, as shown in Figure 2.The following subsections introduce its

use for collaboration and communication. A web-based program-
ming environment for building Internet of Things devices with a
piece of JavaScript code, named “f3.js [16],” is used as an example
that implements the proposed interaction design.

3.1 Live Tuning
Live programming environments usually show an ordinary text-
based code editor to the programmer, requiring the user to have
prior knowledge of programming to a certain extent. Meanwhile,
our prior study [21] suggests that augmenting the code editor with
graphical representations would even help end-users to compre-
hend and edit program behaviors.

Live Tuning [15] is an interaction design for live programming
environments that hides the code editor but shows sliders and other
appropriate graphical user interfaces for editing part of the run-
ning programs. While the code editor exposes everything about
the program specifications, graphical user interfaces limit the free-
dom of editing a program to a certain extent to prevent the user
from breaking the core specifications. Live Tuning implements a
multi-layer interface design [28], one of which is a base layer for
the developer, and the other is built for the user. It is also an appli-
cation of themeta-design framework [10], inwhich ameta-designer
(developer) defines degrees of freedom for the user with which the
user can customize the software to fit their needs.

3.2 User-Generated Variables
In Live Tuning, the developer and user of programs use the same
programming environment to run the programs. They can manip-
ulate graphical user interfaces to edit variable values to customize
programs. The customized programs are indeed the results of col-
laboration between the developer and user. However, this is uni-
directional in that the developer defines everything, and there is
no support for the user to provide feedback.

User-Generated Variables [17] is an interaction design built on
top of Live Tuning. It further allows users of programs to declare
new variables and add mock user interfaces bound to the variables.
When a new variable is declared, the programming environment
notifies the program developer via social networking services such
as Twitter. Then, the developer can edit the code to remove the
mock user interfaces or to make it work by implementing a logic
that binds the variable values to the behavior of the program.

<Programming’20> Companion, March 23–26, 2020, Porto, Portugal Jun Kato and Keisuke Shimakage

������

�����������
���

import api from “lib”;

jumpCoeff = 0.3;

api.loop = () => {

 if (isJumping) y += jumpCoeff*v;

}

�����������������������
�������������������

������������������

���������
��������	����������������
��
�������������������

Figure 3: As social effort, we designed programming environment consisting of evangelist and computational artifacts.

3.3 Technical Efforts toward Convivial
Environment

These technical efforts do not only eliminate the difference be-
tween programming (building) and runtime (using) environments
but also make programming more inclusive. Through the intro-
duction of Live Tuning, a programming environment becomes not
only for those with prior knowledge of programming but also for
users of programs. Through the introduction of User-Generated
Variables, a programming concept (the variable) becomes amedium
for mutual communication between them.

When tools for programming have built-in features for collab-
oration and communication, the programming environment can
be considered to include not only computational artifacts but also
people who collaborate and communicate with each other. In such
a circumstance, the technical effort cannot stand on its own, and
we need to think of the community of people instead of a person
using the environment. The next section introduces our ongoing
effort to think of such a social aspect.

4 EVANGELIST AS PART OF PROGRAMMING
ENVIRONMENT

One benefit of an environment design that consists of computa-
tional artifacts resides in its scalability. Once the design is fixed,
a programming language, a library, a toolkit, or a programming
environment can be distributed through the Internet and can be
used by anyone in theory. However, there has always been some-
one who has an urgent need for the provided functionality, but the
functionality is not accessible.

One notable example is the use of computers by people with
impairments. In particular, hardware devices for these people to
deal with their impairments face various requirements, and ex-
isting products often fall short of meeting the needs of individu-
als and their particular symptoms. While they need personalized
devices, they often cannot customize devices by themselves. As
demonstrated in the previous section, f3.js [16] is a programming
environment that can be used by both a programmer and non-
programmer. However, it is primarily designed for those without
any impairments.

In this section, we report the development process of a toolkit
named “OTON GLASS” for building smart glasses that help a visu-
ally impaired person to read words. Throughout the development,

Figure 4: Overview of hardware components of OTON
GLASS and its assembled form.

we have been implementing a programming environment centered
on a visually impaired person, or a “maker,” who wants to build
customized smart glasses, as shown in Figure 3. The toolkit part
consists of a set of hardware blueprints that can be 3D printed and
software components that can be freely customized. Meanwhile,
we have formalized the environment to contain not only such com-
putational artifacts but also a person who can help them to achieve
this goal, whom we call an “evangelist.” As case studies, we asked
three teams of toolkit evangelists and users to develop their glasses
with unique shapes and features.

4.1 OTON GLASS
“Oton” is a Japanese informal term for “father.” OTON GLASS was
initially developed as a personal device in the form of glasses to
help the father of one of the authors who began suffering from a
macular disease in 2012.Then, we got to know people who had sim-
ilar issues, and tens of copies of the device became available for a
limited number of testers. Later, we noticed that visually impaired
people had a variety of symptoms, and more importantly, they had
their own style of wearing glasses.

OTON GLASS is composed of 3D printed enclosures, glasses, a
camera module, a Raspberry Pi module, a custom PCB module, a
battery module, an LTE module, and a speaker module. Since the
components are off-the-shelf, it looks straight-forward enough for
each person to customize their own device. However, on the one
hand, it was not realistic for we (a small team of people) to respond
to all of the customization requests, and, on the other hand, it was
also not feasible for people who are visually impaired to customize
and build the device by themselves, even with the help of an ordi-
nary toolkit or a programming environment such as f3.js [16].

Rethinking Programming “Environment” <Programming’20> Companion, March 23–26, 2020, Porto, Portugal

�������������������������������

��������������������
 �����������	���
��	������������

�����������	���
�������
����

�����������������

Figure 5: OTON GLASS toolkit allowed three teams of makers and evangelists to develop devices with wide variety of shapes
and features.

As a consequence, we decided to design a toolkit that is used
by people with two distinct roles. One role, called “maker,” is to
design, build, and use the customized device. The other role, called
“evangelist,” is to understand how to use the toolkit and help to
build the customized device with the toolkit. The evangelist serves
as a sort of catalyst to make the design process happen with the
help of the toolkit. We call this pair of toolkit and evangelist “a
programming environment” for the maker.

4.2 Case Studies
To investigate the effectiveness of the programming environment
design, we asked three teams of makers and toolkit evangelists
to develop their glasses (Table 1). The development period was
from July to August 2019, and photos of the outcome from these
case studies are shown in Figure 5. The makers had diverse back-
grounds, and those with visual impairments are marked as (VI).
Snowball sampling was used to invite all of the makers.

The evangelists were those who had gotten involved in the de-
velopment of the OTON GLASSby the time when the case studies
started. Each of them had different types of expertise – one engi-
neer was capable of both software and hardware design (referred
to as SH), another was capable of hardware design (referred to as
H), and the other was capable of software design (referred to as S).
For each team, all of these evangelists could have been potentially
available. Those who contributed to the outcome are credited in
the table.

4.2.1 Case of Architect (VI) & Interaction Designer. One architect
had a progressive disease that gradually made it difficult to see
things.When he found something to read, he needed to use a smart-
phone to take a picture of it and perform a pinch gesture to mag-
nify the content. For instance, there are various kinds of remote
controllers, and since they have unique button layouts, the cam-
era roll of his smartphone contained many pictures of the user in-
terfaces of the remotes. The architect teamed up with an interac-
tion engineer, met the evangelists (including SH and H), and had

Table 1: Three teams and their outcome using toolkit.

Maker(s) Outcome Evangelist(s)
Architect (VI) & inter-
action designer

OTON GLASS in a de-
tachable pen form

SH, H

Paralympian (VI) &
his helper

Real-time communica-
tion feature

S

Two software engi-
neers (both VI)

API wrapper and its
three applications

SH

a brainstorming session to think of how to personalize the OTON
GLASS for himself.

In the end, the architect came up with the idea of customizing
the appearance of the OTON GLASS. He uses a pen for his profes-
sional work all the time and feels a bit lost when he does not have
the pen.Therefore, what if he could transform the OTONGLASS to
have a pen form? In its original 3D model, the camera module was
always attached to the temple of the glasses. Since the architect
and the interaction engineer did not have much expertise in hard-
ware modeling, the evangelists (SH and H) helped them to create
a 3D model into which the camera module is built.

As a result, the architect could hold the OTONGLASS camera in
his hand. Since the pen was a particularly personal object for the
architect, he could have a more embodied feeling with the OTON
GLASS device. For instance, when he was not holding it, he could
put it behind his ear, which was a familiar action to him.

He also appreciated that the read-aloud feature of the OTON
GLASS got more accessible and thus practical. Using this feature
used to require finding targets carefully, but the pen form enabled
quick zapping among potential targets. Through such experience,
he started to feel that his body was augmented and extended and
commented that he wanted to use the device longer.

4.2.2 Case of Paralympian (VI) & His Helper. A visually impaired
Paralympian and a professional supporter who accompanied the

<Programming’20> Companion, March 23–26, 2020, Porto, Portugal Jun Kato and Keisuke Shimakage

Paralympian on exhibition matches teamed up in the second case
study. When the Paralympian goes to an exhibition match, it is
often the case that the number of accompanied professional sup-
porters is smaller than the number of Paralympians, so there arises
the need for remote supporters.

While the original OTON GLASS could already help the Par-
alympians, the features were limited to recognizing and reading
textual information. Examples of further difficulties faced by the
Paralympians included, but were not limited to, 1) choosing a fa-
vorable food option from a restaurant menu, 2) finding their record
from the official score table, 3) getting directions to their hotel
room with the right room number, and 4) choosing the uniform
clothes that were in the right color.

The concept-making of complementing the OTON GLASS fea-
tures with remote supporters went in a straight-forward manner,
and for the actual implementation, evangelist S contributed enor-
mously toward the working prototype. In the end, a voice chat
feature using the Web Real-Time Communication (WebRTC) was
added to OTON GLASS and could be used practically by the team
members.

Unlike ordinary teleconference applications such as Skype, uti-
lizing a camera attached to glasses means directly sharing what
one sees. This worked quite well for the team and would also work
in a community of people with a stable trust relationship.

4.2.3 Case of Software Engineers (VI). The third case study was
a team of two software engineers. One engineer was blind, and
the other had a slight issue with his eyesight. The blind engineer
had developed software by touch-typing a keyboard with auditory
feedback but had difficulty, especially when he needed to build
up mathematically complex algorithms. During the development,
the other engineer helped him on such occasions. Evangelist SH
helped these two engineers to modify the OTON GLASSsoftware.

The blind engineer had his own view on programming and de-
sired a personalized application programming interface (API) of
the OTON GLASS software for himself. As such, the team first de-
veloped an API wrapper around the existing OTONGLASS feature
as well as the other features provided by the Raspberry Pi device.
With the help of the evangelist, the team transformed the OTON
GLASS toolkit into another toolkit with its own distinct API.

To demonstrate its usage, they prototyped three applications.
The first application intercepts the OTON GLASS feature of read-
ing recognized text and allows the user to navigate to a specific lo-
cation in the text with the buttons of the OTON GLASS hardware
to skip or rewind content being read aloud.The second application
also intercepts this feature and allows photos to be shared with his
friends instead of sending them to the OCR API. The third appli-
cation completely removes the OTON GLASS features and utilizes
the buttons to control music playback.

4.3 Social Efforts toward a Convivial
Environment

The case studies demonstrated the power of the combination of
evangelists and makers. Each case was successful and unique to
the maker in each team, who had different symptoms and lived
their life differently.Themakers could not implement a wide range

of applications without the help of the evangelists. Technology-
oriented toolkits that do not require support from a community
of people would scale better, but to solve socio-technical issues in
the wild, connecting people with appropriate knowledge would be
beneficial, recalling the discussion on social creativity [9].

Also, the fact that three teams in the case studies could work in
parallel in the same development period implies that the toolkit-
evangelist-maker model would scale better than the conventional
developer-maker (tailor-made)model. If therewere no toolkit, each
team would have needed to create the product from the ground up,
which would not have been feasible. We would love to see more
toolkits developed with this balanced approach.

5 DISCUSSIONS AND FUTUREWORK
5.1 Rethink Programming “Environment”
There has been increasing interest in improving programming en-
vironments among multiple research fields. Researchers in the pro-
gramming language field are thinking of programming experience
design beyond language design, and relevant workshops such as
PX (Programming Experience Workshop) and LIVE (Workshop on
Live Programming Systems) were born as a result. A programming
environment provides a programming experience, and this same
phenomenon has been observed from different perspectives. It has
become common for researchers in the human-computer interac-
tion field to design integrated development environments and their
plug-ins, going beyond designing a single toolkit or user interface
for programming. An environment is a set of multiple tools de-
signed for a particular workflow of application development.

Following this interdisciplinary literature, we aimed at provid-
ing new perspectives on programming environment design by con-
sidering the communicative and collaborative aspects of environ-
ments. To do so, we introduced two concrete examples of program-
ming environment design. First, we designed a programming en-
vironment that is not monolithic nor only for those with exper-
tise in programming but contains flexible multi-layered user inter-
faces. The environment provides appropriate user interfaces and
helps them communicate with people from diverse technical back-
grounds. Second, we designed a programming environment that
consists of not only computational artifacts but also people who
support programming.Throughout these examples, we showed that
a programming environment designer could design how a com-
munity of people communicate and collaborate within the envi-
ronment. This is no longer a purely technical effort and involves
social effort. Future work could elaborate on the toolkit-evangelist-
makermodel and investigate social programming-environment de-
sign that further accelerates social creativity.

5.2 Scalability and Social Inclusion
Technical efforts to improve programming environments are scal-
able in that the implemented features work automatically. At the
same time, however, there could be someone who is out of the
scope and needs dedicated help to use a feature. Social efforts could
complement technical efforts and address such limitations. For in-
stance, f3.js [16] is a web-based programming environment and
can run on any modern web browsers. It allows the user to out-
put customized microcontroller firmware and a PDF file to print

Rethinking Programming “Environment” <Programming’20> Companion, March 23–26, 2020, Porto, Portugal

with a laser cutter. However, visually impaired people might have
difficulties in assembling the physical computing device. OTON
GLASS addresses this by introducing an evangelist of the toolkit.

We need to be mindful that the scalability provided by the tech-
nical implementations is not the goal by itself. We consider the
scalability to be beneficial since it contributes to making program-
ming environments more inclusive. Nonetheless, we should not
stop our technical efforts since we could sometimes replace social
efforts with novel techniques. For instance, we might be able to
realize computational support for visually impaired people to aid
them in building a physical device by themselves, potentially elim-
inating the need for them to gain help from an evangelist.

We designed both of the two example programming environ-
ments with domain-specific insights gained from our expertise and
dialogues with users. In particular, f3.js was designed in the con-
text of physical computing literature, and OTON GLASS was de-
signed in the context of DIY-AT (do-it-yourself assistive technol-
ogy) literature. They pragmatically provided state-of-the-art solu-
tions to real issues that the users were facing. Environment design
needs to carefully consider domain specificity to seek the right bal-
ance between scalability and social inclusion.

5.3 Programming as Communication
The example programming environments open up new pathways
for users with diverse technical backgrounds to communicate with
each other through programming-related activities. We envision
that programming should be a more social activity than what it
is right now. While existing efforts to make the software devel-
opment process social are often called “social coding,” it is mostly
about developing software with the help of an optional social ac-
tivity and not the opposite (developing software naturally being a
social activity).

In a section titled “Design as Communication” in a book writ-
ten in 1995, Thomas Erickson wrote, “It is useful to think about
design as a process of communication among various audiences.
Central to this discussion is the notion of design artifacts, mate-
rial or informational objects that are constructed during the design
process [8].”We should consider what programming environments
can do when we replace “design” with “programming” and “design
artifacts” with “programs” in the quote and how the process can
involve “various audiences.”

One notable relevant work would be Picode [21], a program-
ming environment that integrates the activity of taking photos into
the programming workflow. Within the environment, a photo is a
reference to a constant value of an integer array representing the
posture data of a human or a robot. Taking a photo defines a new
constant value and is part of the programming activity. In work-
shop events utilizing the Picode environment, the photo-taking ac-
tivity was often an opportunity for the participants to communi-
cate and discuss how the program should behave.

“Programming as Communication” like this example is yetmuch
under-explored, and there seem to be many opportunities for fu-
ture work. For instance, just as the static value stored in a variable
was used as a communication medium [15, 17], future work could
investigate the use of function as a communicationmedium. A user
without prior knowledge of programming could demonstrate the

desired behavior to the programming environment, which would
generate amock function definition, and another user would be no-
tified and could implement the actual function body.This is similar
to programming by demonstration, except for the subject inferring
the function definition being a human user instead of a system ob-
serving the demonstration.

5.4 Empowerment through Programming
Technologies for personal fabrication have enabled the fabrication
of personalized products, and such applications that help people
with impairments are called “DIY-AT” (do-it-yourself assistive tech-
nology). However, it is still difficult for people with an impairment
to become “makers” by themselves, and in many cases, their par-
ents, friends, and care-givers utilize DIY-AT technologies. To this
end, one prior work in which a personal fabrication workshop was
held for people with disabilities revealed that they could experi-
ence the feeling of empowerment through a do-it-yourself activity
in which physical objects were built with the help of workshop
facilitators [23].

The prior DIY-AT research has primarily focused on building
passive physical objects, and our work has focused on building in-
teractive computational artifacts.The state-of-the-art in both kinds
of literature aims at allowing diverse people to get involved in the
building process, and future work should investigate the charac-
teristics of empowerment achieved through the involvement. In
particular, we are interested in the spectrum of empowerment pro-
vided by different levels of involvement in the activities of pro-
gramming. Conventionally, a limited number of people completed
programming by themselves, and our work revealed that there are
more ways to get involved in the process, such as tuning parame-
ters, declaring variables, and doing so with the help of evangelists.
We should probably also look into the research of the open-source
community and connect these pieces of literature.

5.5 Remote and Local Collaborations in
Programming

A prior discussion on social creativity [9] pointed out that the dis-
tance across the spatial dimension is one of the critical factors for
collaborative creative output. Remote collaboration is often criti-
cized for being less productive than local collaboration. However,
it is said to highlight shared concerns rather than shared locations.
Since it allows more people to join the collaborative process, their
local knowledge can be more easily exploited, potentially resulting
in more creative output. To follow this insight, we implemented
f3.js [16] as a web-based programming environment. Communi-
cation and collaboration in the environment happen completely
remotely, just as they happen successfully in open-source commu-
nities.

In contrast, in the OTON GLASS project, the locality of people
played an essential role. Because of the physical nature of the de-
velopment of smart glasses, and probably also because of the visual
impairment of the people involved, efficient development could
happen only where the people were physically present. The term
“community-based prototyping” was coined by those in the Open-
Pool project [20] through their collaborative experience of devel-
oping a digitally-augmented billiard table. They also pointed out

<Programming’20> Companion, March 23–26, 2020, Porto, Portugal Jun Kato and Keisuke Shimakage

that the development of physical devices often requires the partic-
ipants to be there, forcing them tomeet face-to-face and encourage
new audiences to participate in the process.

The locality of products and data was discussed in the FabCity
white paper [5]: “It (FabCity) is a new urban model of transform-
ing and shaping cities that shifts how they source and use mate-
rials from ’Products In Trash Out’ (PITO) to ’Data In Data Out’
(DIDO).” Our findings from the OTON GLASS project are two-fold.
First, a small number of people (such as those who are visually
impaired) cannot always be supported sufficiently by the DIDO
model. Second, evangelists who have specific know-how that is
difficult to be transferred as digital data could potentially address
technical issues. We foresee that people will serve as the carrier
of complex information, and “People In People Out” (PIPO) could
augment the DIDO model. It is also possible that technological ad-
vancements in virtual reality, augmented reality, and robotics will
make remote collaborationmore efficient, making such a PIPO pro-
cess completely virtual.

6 CONCLUSION
Throughout this paper, we aimed at extending the design process
of a programming environment to consider its communicative and
collaborative roles. We introduced two concrete examples of pro-
gramming environment design, with a focus on technical innova-
tion and social inclusion, respectively.While technical innovations
made on user interfaces for programming make the programming
environment scalable and invite more people, understanding the
socio-technical aspect of domain-specific applications and the ac-
companying pragmatic social effort is essential to making the en-
vironment inclusive. We argue that more work on programming
environment design with the right balance between these two per-
spectives is vital for the future of convivial computing.

ACKNOWLEDGEMENTS
We sincerely thank all the collaborators who contributed to the re-
search and development of the example systems and their interac-
tion design introduced in the paper, most notably Masataka Goto
for f3.js [16], Live Tuning [15], and User-Generated Variables [17]
and Keita Miyashita and Tomoaki Sano for OTON GLASS. This se-
ries of work was supported in part by JST ACCEL Grant Number
JPMJAC1602, Japan. We also thank Satoshi Sekiguchi, who trig-
gered this research through a thought-provoking comment on the
distinction between development and runtime environments. At
the Convivial Computing Salon, Philip Tchernavskij kindly pro-
vided an informative and constructive critique, which should be
accessible on our project page1. Last but not least, we thank all
users of the programming environments we have built.

REFERENCES
[1] 2019. SIGCSE ’19: Proceedings of the 50th ACM Technical Symposium on Computer

Science Education (Minneapolis, MN, USA). Association for Computing Machin-
ery, New York, NY, USA.

[2] Marc Andreessen. 2011. Why software is eating the world. Wall Street Journal
20, 2011 (2011), C2.

[3] Sebastian Burckhardt, Manuel Fahndrich, Peli de Halleux, Sean McDirmid,
Michal Moskal, Nikolai Tillmann, and Jun Kato. 2013. It’s Alive! Continuous

1Programming as Communication | junkato.jp.
https://junkato.jp/programming-as-communication/

Feedback in UI Programming. In Proceedings of the 34th ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation (Seattle,Washington,
USA) (PLDI ’13). ACM, New York, NY, USA, 95–104. https://doi.org/10.1145/
2491956.2462170

[4] Margaret M. Burnett and Brad A. Myers. 2014. Future of End-User Software
Engineering: Beyond the Silos. In Proceedings of the on Future of Software Engi-
neering (Hyderabad, India) (FOSE 2014). Association for Computing Machinery,
New York, NY, USA, 201–211. https://doi.org/10.1145/2593882.2593896

[5] Fab City. 2018. Fab city whitepaper: Locally productive, globally connected self-
sufficient cities. Website. Retrieved January 16, 2020 from https://fab.city/
uploads/whitepaper.pdf.

[6] CSforALL. [n.d.]. CSforALL: Computer Science for ALL Students. Website. Re-
trieved January 16, 2020 from https://www.csforall.org.

[7] Roger T. Dean and Alex McLean. 2018. The Oxford Handbook of Algorithmic
Music. Oxford University Press. https://www.oxfordhandbooks.com/view/10.
1093/oxfordhb/9780190226992.001.0001/oxfordhb-9780190226992

[8] Thomas Erickson. 1995. Notes on Design Practice: Stories and Prototypes as
Catalysts for Communication. John Wiley & Sons, Inc., USA, 37–58. http:
//www.pliant.org/personal/Tom_Erickson/Stories.html

[9] Gerhard Fischer. 2005. Distances and Diversity: Sources for Social Creativity.
In Proceedings of the 5th Conference on Creativity & Cognition (London, United
Kingdom) (C&C ’05). Association for ComputingMachinery, NewYork, NY, USA,
128–136. https://doi.org/10.1145/1056224.1056243

[10] Gerhard Fischer, Daniela Fogli, and Antonio Piccinno. 2017. Revisiting and
broadening the meta-design framework for end-user development. In New per-
spectives in end-user development. Springer, 61–97.

[11] Gerhard Fischer and Andreas Girgensohn. 1990. End-User Modifiability in De-
sign Environments. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems (Seattle, Washington, USA) (CHI ’90). Association for Com-
puting Machinery, New York, NY, USA, 183–192. https://doi.org/10.1145/97243.
97272

[12] Benjamin Mako Hill and Andrés Monroy-Hernández. 2013. The Cost of Collabo-
ration for Code and Art: Evidence from a Remixing Community. In Proceedings
of the 2013 Conference on Computer Supported Cooperative Work (San Antonio,
Texas, USA) (CSCW ’13). Association for Computing Machinery, New York, NY,
USA, 1035–1046. https://doi.org/10.1145/2441776.2441893

[13] Ivan Illich and Anne Lang. 1973. Tools for conviviality. Harper & RowNew York.
[14] Jennifer Jacobs, Sumit Gogia, Radomír Mundefinedch, and Joel R. Brandt. 2017.

Supporting Expressive Procedural Art Creation through Direct Manipulation. In
Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems
(Denver, Colorado, USA) (CHI ’17). Association for Computing Machinery, New
York, NY, USA, 6330–6341. https://doi.org/10.1145/3025453.3025927

[15] Jun Kato and Masataka Goto. 2016. Live Tuning: Expanding Live Programming
Benefits to Non-Programmers. In Proceedings of the SecondWorkshop on Live Pro-
gramming Systems (Rome, Italy) (LIVE ’16). 6. https://junkato.jp/publications/
live2016-kato-livetuning.pdf

[16] Jun Kato and Masataka Goto. 2017. F3.Js: A Parametric Design Tool for Physical
Computing Devices for Both Interaction Designers and End-users. In Proceed-
ings of the 2017 Conference on Designing Interactive Systems (Edinburgh, United
Kingdom) (DIS ’17). ACM, New York, NY, USA, 1099–1110. https://doi.org/10.
1145/3064663.3064681

[17] Jun Kato and Masataka Goto. 2017. User-Generated Variables: Streamlined In-
teraction Design for Feature Requests and Implementations. In Companion to
the First International Conference on the Art, Science and Engineering of Program-
ming (Brussels, Belgium) (PX ’17). ACM, New York, NY, USA, Article 28, 7 pages.
https://doi.org/10.1145/3079368.3079403

[18] Jun Kato, Takeo Igarashi, and Masataka Goto. 2016. Programming with Exam-
ples to Develop Data-Intensive User Interfaces. Computer 49, 7 (7 2016), 34–42.
https://doi.org/10.1109/MC.2016.217

[19] Jun Kato, Tomoyasu Nakano, and Masataka Goto. 2015. TextAlive: Integrated
Design Environment for Kinetic Typography. In Proceedings of the 33rd Annual
ACM Conference on Human Factors in Computing Systems (Seoul, Republic of
Korea) (CHI ’15). ACM, New York, NY, USA, 3403–3412. https://doi.org/10.1145/
2702123.2702140

[20] Jun Kato, Takashi Nakashima, Hideki Takeoka, Kazunori Ogasawara, Kazuma
Murao, Toshinari Shimokawa, and Masaaki Sugimoto. 2013. OpenPool:
Community-based Prototyping of Digitally-augmented Billiard Table. In Pro-
ceedings of the 2nd IEEE Global Conference on Consumer Electronics (IEEE GCCE
’13). 175–176. https://doi.org/10.1109/GCCE.2013.6664790

[21] Jun Kato, Daisuke Sakamoto, and Takeo Igarashi. 2013. Picode: Inline Photos
Representing Posture Data in Source Code. In Proceedings of the SIGCHI Confer-
ence on Human Factors in Computing Systems (Paris, France) (CHI ’13). 3097–3100.
https://doi.org/10.1145/2470654.2466422

[22] Mary Beth Kery, Marissa Radensky, Mahima Arya, Bonnie E. John, and Brad A.
Myers. 2018. The Story in the Notebook: Exploratory Data Science Using a
Literate Programming Tool. In Proceedings of the 2018 CHI Conference on Hu-
man Factors in Computing Systems (Montreal QC, Canada) (CHI ’18). Associ-
ation for Computing Machinery, New York, NY, USA, Article 174, 11 pages.

https://junkato.jp/programming-as-communication/
https://doi.org/10.1145/2491956.2462170
https://doi.org/10.1145/2491956.2462170
https://doi.org/10.1145/2593882.2593896
https://fab.city/uploads/whitepaper.pdf
https://fab.city/uploads/whitepaper.pdf
https://www.csforall.org
https://www.oxfordhandbooks.com/view/10.1093/oxfordhb/9780190226992.001.0001/oxfordhb-9780190226992
https://www.oxfordhandbooks.com/view/10.1093/oxfordhb/9780190226992.001.0001/oxfordhb-9780190226992
http://www.pliant.org/personal/Tom_Erickson/Stories.html
http://www.pliant.org/personal/Tom_Erickson/Stories.html
https://doi.org/10.1145/1056224.1056243
https://doi.org/10.1145/97243.97272
https://doi.org/10.1145/97243.97272
https://doi.org/10.1145/2441776.2441893
https://doi.org/10.1145/3025453.3025927
https://junkato.jp/publications/live2016-kato-livetuning.pdf
https://junkato.jp/publications/live2016-kato-livetuning.pdf
https://doi.org/10.1145/3064663.3064681
https://doi.org/10.1145/3064663.3064681
https://doi.org/10.1145/3079368.3079403
https://doi.org/10.1109/MC.2016.217
https://doi.org/10.1145/2702123.2702140
https://doi.org/10.1145/2702123.2702140
https://doi.org/10.1109/GCCE.2013.6664790
https://doi.org/10.1145/2470654.2466422

Rethinking Programming “Environment” <Programming’20> Companion, March 23–26, 2020, Porto, Portugal

https://doi.org/10.1145/3173574.3173748
[23] Janis Lena Meissner, John Vines, Janice McLaughlin, Thomas Nappey, Jekate-

rina Maksimova, and Peter Wright. 2017. Do-It-Yourself Empowerment as Ex-
perienced by Novice Makers with Disabilities. In Proceedings of the 2017 Con-
ference on Designing Interactive Systems (Edinburgh, United Kingdom) (DIS ’17).
Association for Computing Machinery, New York, NY, USA, 1053–1065. https:
//doi.org/10.1145/3064663.3064674

[24] Brad A. Myers, John F. Pane, and Andy Ko. 2004. Natural Programming Lan-
guages and Environments. Commun. ACM 47, 9 (9 2004), 47–52. https://doi.
org/10.1145/1015864.1015888

[25] Lexico powered by Oxford. [n.d.]. Environment | Meaning of Environment by
Lexico. Website. Retrieved January 16, 2020 from https://www.lexico.com/
definition/environment.

[26] Fernando Pérez and Brian E. Granger. 2007. IPython: A System
for Interactive Scientific Computing. Computing in Science & En-
gineering 9, 3 (2007), 21–29. https://doi.org/10.1109/MCSE.2007.53

arXiv:https://aip.scitation.org/doi/pdf/10.1109/MCSE.2007.53
[27] Roman Rädle, Midas Nouwens, Kristian Antonsen, James R. Eagan, and

Clemens N. Klokmose. 2017. Codestrates: Literate Computing with Webstrates.
In Proceedings of the 30th Annual ACM Symposium on User Interface Software
and Technology (Québec City, QC, Canada) (UIST ’17). Association for Comput-
ing Machinery, New York, NY, USA, 715–725. https://doi.org/10.1145/3126594.
3126642

[28] Ben Shneiderman. 2002. Promoting Universal Usability with Multi-Layer Inter-
face Design. SIGCAPH Comput. Phys. Handicap. 73–74 (6 2002), 1–8. https:
//doi.org/10.1145/960201.957206

[29] SideFX. [n.d.]. Houdini | 3D Procedural Software for Film, TV & Gamedev |
SideFX. Website. Retrieved January 16, 2020 from https://www.sidefx.com/en/
products/houdini.

https://doi.org/10.1145/3173574.3173748
https://doi.org/10.1145/3064663.3064674
https://doi.org/10.1145/3064663.3064674
https://doi.org/10.1145/1015864.1015888
https://doi.org/10.1145/1015864.1015888
https://www.lexico.com/definition/environment
https://www.lexico.com/definition/environment
https://doi.org/10.1109/MCSE.2007.53
https://arxiv.org/abs/https://aip.scitation.org/doi/pdf/10.1109/MCSE.2007.53
https://doi.org/10.1145/3126594.3126642
https://doi.org/10.1145/3126594.3126642
https://doi.org/10.1145/960201.957206
https://doi.org/10.1145/960201.957206
https://www.sidefx.com/en/products/houdini
https://www.sidefx.com/en/products/houdini

	Abstract
	1 Introduction
	2 Background
	2.1 Respective Support for Programmers/End-users/Novices
	2.2 Domain-specific Programming Experience
	2.3 Live Programming

	3 Runtime Environment as Programming Environment
	3.1 Live Tuning
	3.2 User-Generated Variables
	3.3 Technical Efforts toward Convivial Environment

	4 Evangelist as Part of Programming Environment
	4.1 OTON GLASS
	4.2 Case Studies
	4.3 Social Efforts toward a Convivial Environment

	5 Discussions and Future Work
	5.1 Rethink Programming ``Environment"
	5.2 Scalability and Social Inclusion
	5.3 Programming as Communication
	5.4 Empowerment through Programming
	5.5 Remote and Local Collaborations in Programming

	6 Conclusion
	References

