

f3.js: A Parametric Design Tool for Physical Computing Devices for Both Interaction Designers and End-users

Jun Kato, Masataka Goto

The presented system is publicly available at http://f3js.org

Physical computing devices, everywhere

Physical computing devices, everywhere

Personal fabrication made easy

Photo taken by Atsushi Tadokoro (CC BY 2.0) https://www.flickr.com/photos/tadokoro/5138646645

Photo taken by Mitch Altman (CC BY-SA 2.0) https://www.flickr.com/photos/maltman23/6954963529

How about device programming & assembly?

Research questions regarding physical computing devices

For interaction designers

How can we support prototyping of the devices?

For end users

How can we support personal customization of the devices?

Preliminary observations: photos of 200 devices and informal interviews

Last minute additions

エレベータ (4)

オーディオ機器 (28)

カメラ (4)

キーボード (6)

ゲーム機 (2)

コーヒーマシン (5)

プリンタ・プロッタ (11)

リモコン (28)

業務用機材 (18)

空調·照明 (22)

自動車 (3)

洗濯機·洗浄器 (7)

調理器具 (21)

電話機・キオスク (13)

^76DB772295AD A37E678186C0B CDA03FAAB95F4 5BE070FB37D7...

20160811_14554 0111_iOS.jpg

20160904_16521 0408_iOS.jpg

20160919_05485 3044_iOS.jpg

20160923_04031 3503_iOS.jpg

WP_20160918_00 _57_19_Pro.jpg

Design patterns in Physical User Interfaces

Line layout

Circle layout

- 187 devices have physical user interfaces on planar surfaces
- 139 devices have modules placed along straight lines
- 51 devices have modules placed on circular paths

Mental gap between software & hardware

- Designers need to imagine hardware while writing code
- "new Button()" does not infer any hardware layout

Difficulties in exploring design alternatives

- Expensive switching cost between two activities in two tools
- Prior efforts in either one of these (software or hardware)

Preliminary observations (summary)

- Typical design patterns should have tool support
- Mental gap between software & hardware exists
- Comparing alternatives is crucial for good design

f3.js: integrated support for programmers

- Live Programming with intuitive APIs of features & layout
- Interactive development of IoT devices in one environment

Module repository for hardware metrics

APIs for 3D extrusion and 2D layout

3D extrusion

f3.js for parametric design of physical computing devices

```
    Typical design patterns should have tool support

                                                       ✓ supported
• Mental gap between software & hardware exists
                                                       ✓ addressed
• Comparing alternatives is crucial for good design
                                                       ✓ supported
```


f3.js: customizing support for end-users

- Interactive UIs for customization
- Automatic generation of device building instructions

User studies

- 14 teams to create physical computing devices with f3.js
 - 5 interaction designers and 16 university students
 - Intel Edison and Grove modules, acrylic panels and screws provided
- 3 interaction designers and 3 end-users with revised f3.js
 - 3 interaction designers asked to create parametric designs
 - 3 end-users asked to customize and assemble devices

User studies: results & discussions

- Creativity support environments, not tools
- 3D vs 2D layout managers
- Interface builders are important
- Code-centric tool complements to 3D modeling tools
- Domain-specific language support (like HTML)

2017/6/14

f3.js: A Parametric Design Tool for Physical Computing Devices for Both Interaction Designers and End-users

Jun Kato, Masataka Goto

The presented system is publicly available at http://f3js.org

