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ABSTRACT 
Although the exploration of design alternatives is crucial for 
interaction designers and customization is required for end-
users, the current development tools for physical computing 
devices have focused on single versions of an artifact. We 
propose the parametric design of devices including their 
enclosure layouts and programs to address this issue. A Web-
based design tool called f3.js is presented as an example 
implementation, which allows devices assembled from laser-
cut panels with sensors and actuator modules to be 
parametrically created and customized. It enables interaction 
designers to write code with dedicated APIs, declare 
parameters, and interactively tune them to produce the 
enclosure layouts and programs. It also provides a separate 
user interface for end-users that allows parameter tuning and 
dynamically generates instructions for device assembly. The 
parametric design approach and the tool were evaluated 
through two user studies with interaction designers, 
university students, and end-users. 
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Integrated development environment; physical computing; 
parametric design; personal fabrication.  
ACM Classification Keywords 
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INTRODUCTION 
Recent advances in personal fabrication have lowered the 
threshold for creating three-dimensional (3D) models, which 
has enabled physical objects to be fabricated. Tools for 
novices to program physical computing devices have also 
been proposed, although current tools have typically focused 
on creating single versions of and devices. 

It is important for interaction designers to create various 
kinds of design alternatives during the prototyping process 
[9]. However, manually exploring and managing design 

options are tedious. In addition, compared to the fabrication 
of 3D models with computer-aided design (CAD) tools, the 
creation of physical devices usually involves programming 
in an integrated development environment (IDE), making 
exploration of design alternatives more difficult. 

There are tools for novices and users without knowledge on 
how to use CAD tools or IDEs to create devices with a 
predefined set of modules and functions [27]. However, there 
is a certain ceiling above which they still need to rely on 
professionals. Thingiverse Customizer [17] allows to create 
parameterized 3D models that can be customized by end-
users, but they cannot fabricate computing devices. 

Tool support is required for both interaction designers and 
end-users to efficiently generate and manage variations in 
devices. This paper proposes to satisfy these needs with a 
parametric design tool (Figure 1). A Web-based design tool 
called f3.js (form follows function(), written in JavaScript) 
is presented as an example implementation, which is publicly 
available at http://f3js.org. Given the programmatic nature of 
parametric design, we chose an IDE rather than a CAD tool 
as the baseline method. The current f3.js design tool supports 
the creation of devices consisting of planar surfaces rather 
than that of general 3D shapes. 

Interaction designers write JavaScript programs within the 
f3.js design tool with our dedicated APIs that define both the 
hardware layout and software of physical computing devices. 
They can declare the parameters for generating the design 
alternatives with a variety of shapes and features and tune the 
parameter values to explore the design space. Furthermore, 
f3.js provides a separate user interface for end-users with the 

 
Figure 1. Parametric design of physical computing devices 
allows their variations to be easily explored and fabricated. 
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interactive parameter-tuning interface and dynamically 
generates instructions for device assembly so that they can 
build the customized devices by themselves.  

The rest of the paper is organized as follows: First, our 
observations on three aspects of the design process are 
explained, and our design goal is presented according to 
these observations. Then, our approach is compared to prior 
work to clarify research contributions. Next, the interaction 
design of the tool is presented in detail. Finally, we explain 
the tool evaluation through two user studies with people from 
diverse technical backgrounds, which is followed by lessons 
learned and implications for future work. 
PRELIMINARY OBSERVATIONS 
This section discusses three aspects of the design process for 
physical computing devices, each of which motivated us in 
our goal of achieving parametric design for the devices. We 
obtained these insights by collecting and analyzing the 
photographs of 200 devices, using our experience (one of the 
authors had more than seven years of physical computing 
research), and conducting informal interviews with 
interaction designers and software engineers with varied 
levels of experience in personal fabrication. 
Design Alternatives for Hardware Layouts and Software 
A physical computing device is a combination of hardware 
(a device enclosure with sensor and actuator modules) and 
software (a program that drives the modules), both of which 
are designed with different tools – CAD tools for the former 
and IDEs for the latter. 

This separation might work well in creating a single artifact 
of the device, but it is cumbersome to create and manage 
multiple variations of the device with different enclosure 
shapes and program features. Exploring design alternatives 
involves numerous iterations of splitting and merging the 
two independent workflows. For instance, testing different 
numbers of buttons in a device requires operations with both 
tools. A tool should provide integrated design support for 
both hardware layouts and software to address this issue. 

There has been much research on investigating [19] and 
improving [24,27,37,38,25,26] the process of fabricating 
physical objects with sensors and actuators. However, few 
researchers have investigated the programming process, and 
no work, to the best of our knowledge, has focused on the 
parametric design of both hardware and software, as is 
reviewed in the related work section. 
Mental Gap between Software and Hardware 
As was discussed in the last subsection, the devices are 
typically created with two independent tools. It is difficult to 
imagine the appearance of devices while writing code in an 
IDE. For instance, code that initializes a button driver does 
not infer any hardware layout, and requires additional 
operations in a CAD tool to specify it. 

In contrast, conventional graphical user interface (GUI) 
applications can solely be created within IDEs, which 

provide integrated support for the entire development 
process. While interface builders in IDEs are used for 
defining the views and code editors for functions, a 
programmer can seamlessly switch back and forth between 
these tools. This is because they are just two different 
representations of the definition of applications features that 
are written in text-based code. 

These observations inspired a design tool that supports code-
centric development similar to that in GUI applications. 
Design Patterns in Physical User Interfaces 
We asked seven people to send photographs of devices that 
ran on electricity that they used in their daily lives to enable 
us to better understand physical user interfaces (PUIs) within 
existing computing devices. The photographs of 200 devices 
were collected (Figure 2). 

As a result, we found that most of them (187) had simple 
geometries constructed from mostly planar surfaces, while 
13 manually operated devices that did not need glancing, 
such as gaming mice and car handles with numerous buttons, 
tended to have more complex geometries. We also found 
certain design patterns for such PUIs. The most common 
pattern found in 139 devices was to align sensor and actuator 
modules along a certain straight line, and the second pattern 
found in 51 devices was to align modules around a certain 
circle. 

These observations suggested that a design tool for physical 
devices should have dedicated support for these typical 
design patterns. Such support would further make the layout 
definition adaptable to changes accompanied by the 
prototyping process. 

We decided to focus on the design process of completely 
planar user interfaces (as opposed to nearly-flat or freeform 
user interfaces) as an initial step. The prototypes were 
assembled from multiple panels, which were cut out from a 
larger panel with laser cutters or cutting plotters. Interaction 

 
Figure 2. Physical devices following design patterns (and 
car handle that does not follow pattern). 
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designers and researchers often use two-dimensional (2D) 
drawing tools such as Adobe Illustrator to define cutting 
paths for enclosures. Since they are designed for general 
graphics, they have often induced mistakes of mismatched 
joints between planes, which we intend to address.  
DESIGN GOAL: PARAMETRIC DESIGN OF DEVICES 
Here, given the preliminary observations, we introduce a 
code-centric development process in which every aspect of a 
physical computing device is defined in a single codebase, 
which enables parametric design and addresses three kinds 
of difficulties in the design process (Figure 3). 

First, GUI-like APIs can not only define the behaviors of 
modules but also their placements on an enclosure to 
automatically generate support structures (e.g., holes for 
screws). A constant value can be declared in the code to 
control the kinds, numbers, layouts, and behaviors of 
modules on a device. The parametric design is easily 
achieved by exposing such values as parameters. Second, an 
interface builder next to the code editor is expected to narrow 
the mental gap between the code and resulting device. Third, 
layout manager APIs can help in creating physical user 
interfaces that follow typical design patterns. 

The code-centric development process itself requires prior 
knowledge of programming and is targeted at interaction 
designers. Meanwhile, the design tool can also allow end-
users to customize the parameter values in the codebase to 

meet their needs. This would be enable by lightweight GUI 
widgets, such as sliders, and the system would dynamically 
generate layouts and programs as well as customized 
instructions to assemble the device. 
RELATED WORK 
This section introduces prior work to highlight the main 
research contributions in our approach and the design tool. 
Parametric Design of Physical Objects 
The effort in generating content by specifying rules and 
tuning parameters is called parametric design within the field 
of architecture and procedural art. Notable examples include 
Maker Case [10], which allows us to specify the width, 
height, and depth of a box shape and create its development 
view that consists of six panels. The user does not need to 
worry about details such as joint matching between panels 
and he/she can focus on design exploration. f3.js provides 
similar but more detailed support for the enclosure design. 

Apart from such a simple example, most tools for the 
parametric design of 2D and 3D models of physical objects 
require explicit programming. DressCode [13] allows 
designers to write code to generate 2D artifacts or directly 
manipulate the artifacts to reflect changes back in the code. 
Grasshopper [7] is an extension to the Rhino 3D modeling 
software that enables 3D models to be generated with a 
visual programming language. OpenSCAD [23] and 
ImplicitCAD [11] both provide a text-based programming 
environment and Shape.js [32] is a JavaScript library for 
generating 3D printer-ready models. Magic Box [33] 
provides a much simpler domain-specific language for the 
parametric design of box shapes. Our tool also utilizes 
programming to not only parameterize physical metrics but 
also the features of computing devices. 

Some GUI tools utilize constraint-based modeling and do not 
necessarily require prior knowledge of programming. 
Typical examples are professional CAD tools such as 
Autodesk Inventor [2], which allow to specify constraints 
and interactively explore parameter space while satisfying 
the constraints. Direct manipulation in GUI tools eases the 
creation of complex shapes, but they cannot be extended to 
parameterize invisible parts of devices, i.e., their features. 

These tools assume a single user who has a certain expertise 
in their usage. In contrast, Thingiverse Customizer [17] is a 
Web-based platform designed for a community of: 1) experts 
in OpenSCAD programming who create parametric 3D 
models and upload their source code and 2) novice end-users 
who use lightweight widgets such as sliders to tune the 
parameters to customize the models. A prior investigation 
[22] revealed the importance of such parametric design tools 
as well as design implications. f3.js is a novel application of 
this approach to physical computing devices, which led to 
the design goal noted in the previous section. It follows 
design implications, such as those of tracking versions, and 
provides reference models of existing sensor and actuator 
modules.  

 
Figure 3. f3.js screenshots of code-centric development 
process for interaction designers (Steps 1–4) and users (3–4). 
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Enclosure Design of Physical Computing Devices 
To the best of our knowledge, f3.js is the first tool for the 
parametric design of computing devices with enclosures.  
However, there have been prior efforts to create single 
versions of the enclosures. 

Prior IDEs for physical computing devices have typically not 
provided graphical representations of the devices. Autodesk 
123D Circuit [1] is one of the exceptions that has provided 
iconic representations of the modules and their logical 
connections. It has also allowed their behaviors, such as 
blinking LEDs, to be simulated. Such simulation is not 
implemented in f3.js but can be easily integrated and thus 
considered in future work. Microsoft .NET Gadgeteer [36] is 
a microcontroller and module system, whose development is 
well supported by the Visual Studio IDE that also has iconic 
representations. PaperPulse [27] goes beyond the symbolic 
representations and allows designers to create the actual 
layouts as well as the programs of paper-based applications. 
Programs are specified as pairs of sensor and actuator events 
and continuous relationships between sensor- and actuator-
related values. Our tool also provides integrated support but 
takes the code-centric approach and allows programmers 
more detailed control of the device design while enabling 
end-user customization. 

There are also external tools to IDEs that help to fabricate 
enclosures for devices. The .NET Gadgeteer plugin for the 
SolidWorks CAD tool [5] allows a Visual Studio project to 
be imported as 3D models of the components. Enclosed [37] 
serves the same purpose without using a professional CAD 
tool. The user specifies the position and orientation of the 
components and the system generates a development view of 
the enclosure to host them. PacCAM [30] helps the user to 
interactively optimize the placements of 2D shapes to be cut 
out on a development view to reduce material usage. Maker’s 
Marks [24] allows to annotate physical objects with printed 
markers that specify the locations of corresponding 
components. Then, the tool scans the objects and fabricates 
the same objects but with holes to host the components. Our 
tool also utilizes the physical metrics of the components to 
calculate their placements with layout managers and 
generate support structures, and our approach can be used in 
conjunction with these prior methods. 
Development Tools for Physical Computing Devices 
Programming support for physical computing devices has 
been studied [8,16]. Our tool is built on top of the prior work 
in that they supported programming features and ours 
additionally supports design of the physical layout. 

While this paper is aimed at supporting the development of 
general microcontroller applications, it should be noted that 
recent work such as PaperPulse [27] has focused on 
particular kinds of applications and reduced the amount of 
prior knowledge that is required. Midas [25] helps to lay out 
printable touch sensors on device surfaces and define events 
on the sensors by demonstration. RetroFab [26] is a design 
tool to augment existing physical user interfaces by 

annotating their 3D scans and generating instructions to 
assemble retrofitting user interfaces. 

Along with recent advances in Web-based technologies, 
there have been various JavaScript libraries to control 
physical devices. Johnny-Five [14] and Cylon.js [4] abstract 
various kinds of microcontrollers, sensors, and actuators and 
provide JavaScript APIs to access them. While their 
applications typically run on a personal computer (PC) 
connected to microcontrollers, an increasing number of tiny 
computers and microcontrollers can execute JavaScript 
programs such as Intel Edison [12], Raspberry Pi [29], and 
Tessel.io [34]. 

These JavaScript libraries and platforms rely on a package 
manager called npm [21], which provides access to various 
kinds of APIs through unique package names. Our design 
tool supports the development of applications that use npm to 
load module drivers. While the current implementation has 
built-in support to develop JavaScript programs for Intel 
Edison, Raspberry Pi, and Tessel.io, it can easily be extended 
for use with other JavaScript libraries. 
CREATING DESIGNS WITH CODE 
This section introduces an overview of the tool interface and 
provides details of features that contribute to the design goal 
of easily creating physical computing devices and their 
design alternatives. 
f3.js Design Tool Overview 
As shown in Figure 3, f3.js provides a code editor to write 
JavaScript source code that produces both the layouts and 
programs for physical computing devices. It also provides an 
interface builder next to the editor just as IDEs for GUI 
applications do. The editor is capable of live programming 
[18] that continuously evaluates the code and keeps the 
interface builder up-to-date. The interface builder shows a 
development view of the device and visualizes warnings of 
interference between sensor and actuator modules, which are 
calculated from module metrics information. It also supports 
direct manipulation, such as the selection of shapes, the 
addition or removal of modules, and the dragging-and-
dropping of modules to change their positions. The 
operations are reflected back in the code to maintain a bi-
directional relationship between the code and view. 
GUI-like APIs for Hardware Layouts and Software 
The following subsections describe the GUI-like APIs 
available in the f3.js design tool. More details on the APIs 
can be found in the documents on the f3.js Website [6]. 

API for Initializing and Controlling Sensors and Actuators 
f3.js does not provide APIs for controlling sensors or 
actuators. Instead, it relies on existing APIs of the target 
platforms [12,29,34] for such features. Interaction designers 
can benefit from their prior knowledge or learn the usage 
from rich resources for the existing APIs. 

f3.js assumes that these APIs represent the drivers of sensors 
and actuators as a JavaScript class. This is akin to the APIs 
for GUI applications where GUI widgets are initialized by 
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the constructors. The main difference is that the driver 
instances are not used to specify how they should be mounted 
on the physical enclosure, which results in a mental gap 
between software and hardware. f3.js aims to fill the gap by 
addressing missing links from the driver instance to its 
physical instance through an npm package called “f3js,” 
whose APIs are introduced below. 

2D API for Path Drawing and Module Placements 
The enclosure layout design in the f3.js design tool is the 
process of creating a tree structure of the component object 
model (COM, similar to the document object model in 
HTML), which can be rendered on an HTML canvas or as a 
PDF file. Sensor and actuator modules can easily be added 
to the COM by passing their driver instances to the add 
method of the f3.js API. It accepts optional parameters of x, 
y, and rotation to place the module at the specified location 
or the layout manager, as will be described later. 

The APIs for drawing paths are similar to those found in 2D 
graphical applications such as drawLine, drawRectangle, and 
drawCircle. These methods return Line, Rectangle, and 
Circle instances, whose stroke and fill properties define 
whether the path should be cut or engraved with a laser cutter. 
More complex paths such as Bezier lines can be drawn with 
the drawPath method. 

A Container created with the createContainer method can 
group multiple modules and paths. It has its transformation 
matrix that allows child modules and paths to be moved and 
rotated together. Unlike GUI applications, it is common in 
the physical user interface (PUI) to rotate shapes since the 
resulting device can be used in various positions and angles. 

3D Modeling by Extruding 2D Paths 
The panels need to have matching edges that are connected 
by a certain joint to assemble 3D shapes from planar panels. 
A simple joint shape with notches and recesses is currently 
supported. Although it can easily be drawn with the 
drawJointLine method, manually drawing lines often result 
in mismatches of the notches and recesses from both edges. 
It gets more complicated at the corner of boxed shapes where 
three joint lines need to match one another. 

The extrude method can be called on a closed path to 
generate panels for constructing a 3D enclosure with a 
specified depth to prevent such mistakes. The panel on the 
opposite side can be optionally omitted (left of Figure 4), 
with the side panels not having joint lines to hold the panel 
(red dashed lines). The panels in the depth direction are not 

only generated for joint lines (Figure 4: red lines), but for 
curves and straight lines (black lines). The panels are 
connected to each other with joint lines, which eliminates the 
need for concern about matching. 

f3.js assigns a numerical identifier to each joint line when 
evaluating the code. Then, the interface builder displays 
corresponding alphabetic labels next to the lines, which 
assists understanding of the resulting 3D shape. In addition, 
f3.js generates an identical notch pattern for each joint line 
to prevent it from being connected to the mismatching joint 
lines. This is a repeating binary pattern of notch-recess (0) or 
notch-notch (1) encoded from the numerical identifier. 
Parametric Design with Lightweight GUI Widgets 
One-to-another correspondence between JavaScript code 
and the layouts and programs of devices has already eased 
the creation of design alternatives. Furthermore, lightweight 
GUI widgets (Figure 5) enable an effective exploration of 
device variations, just as Juxtapose [9] did on an exploration 
of graphical and physical interaction designs. 

When a variable declaration is made with a text comment in 
the code editor, a corresponding lightweight GUI widget is 
instantly populated below the interface builder. The type of 
the widget is dependent on the type of the initial value of the 
variable and the text comments. 

When the GUI widgets are manipulated, the source code is 
edited to reflect the updated values. Manipulating the widget 
can affect every aspect of the device to be generated. First, 
the interface builder is also updated with warnings of module 
interferences, if any, which helps with module placements. 
Second, relevant files (PDF files to be sent to laser cutters 
and ZIP/TAR files to be installed on the target platform) are 
also updated, which can be downloaded by clicking on 
corresponding buttons.Every time the files are downloaded, 
corresponding design alternatives are assigned a unique 
numerical identifier that eases their management. f3.js 
records and lists all design alternatives made during the 
prototyping process (bottom of Figure 3) in this way. 
Layout Managers for Flexible Layouts 
According to the design patterns found in existing PUIs, our 
layout manager API supports the placement of modules and 
paths that follows design patterns (Figure 6). 

 
Figure 5. Variable declarations with special comments and 
corresponding GUI widgets. 

 
Figure 4. Example usage of extrusion methods. 



6 

Unlike GUI layout managers that arrange components to fill 
rectangles, our layout manager aligns components along a 
specified path. We consider that this difference results from 
their different constraints; while GUI design is aimed at not 
wasting pixels in rectangular boundaries (as the name of the 
Java 2D API pack() suggests), PUI design does not need to 
fill spaces. The most prominent constraints are derived from 
users’ physical properties such as their hand sizes, and it is 
relatively important to assign appropriate spaces. 

Given the preliminary observation on PUI design patterns, 
the current implementation allows modules and paths to be 
aligned along a guide path of a line or circle with some 
optional parameters. The modules and paths can be aligned 
with fixed margins (name: “align”) or distributed to fill the 
path length (name: “distribute”). The vertical alignment of 
modules and paths against guide paths can also be chosen 
(valign: “top”|“middle”|“bottom”). The modules and paths 
can maintain their orientation or be rotated toward the path 
(rotate: true|false). Whether to wrap the module or path 
placement at the end of the line and continue onto the next 
line or to continue along the line regardless of its length 
(wrap: true|false) can be specified in line layout. Whether 
the modules and paths around the circle can be aligned 
clockwise or counterclockwise (clockwise: true|false), as 
well as the direction offset of the first module (offset: 
n[rad]), can also be specified in circular layout. 
CUSTOMIZING DESIGNS VIA GUI 
The f3.js design tool enables customization, printing, and the 
use of devices without prior knowledge by providing 
lightweight GUI widgets for customization and detailed 
instructions on building of devices (Figure 7). Building 
physical prototypes that perfectly match the need is “as easy 
as assembling a plastic model kit” with f3.js (quoted from a 
user study). 
Parametric Design with Graphical User Interfaces 
Users first search for existing projects. Once an interesting 
project is found, a project page displays its details when it is 
accessed. The page provides lightweight GUI widgets that 
allow users to interactively explore device variations. 

Tweaking parameters with the widgets silently updates 
variable declarations in the codebase, and the print preview 

is consequently updated. Unlike the interface builder for 
interaction designers that can edit the codebase, the print 
preview for end-users can only be used to check the 
development view, which prevents unintentional changes 
breaking in the core functionality of the device. 
Preparing Hardware Modules and Materials 
There are detailed instructions on which sensor and actuator 
modules to purchase below the print preview. The list is 
dynamically generated simultaneously as the print preview 
is updated by aggregating the type and number of modules 
used in the project. The list also continues to other tools and 
materials such as Phillips’ screwdrivers, sheets of acrylic 
panels, and glue for connecting the panels. 

Each module name is a link to the module information page, 
where the description, metrics information, and relevant 
links, such as those for introducing specifications and for 
shopping, are presented. With such concrete guidance, users 
can confidently prepare the required materials. 
Printing Layouts and Assembling Devices 
Next to the list of modules is a link to download PDF files 
that can be directly sent to the laser cutter. It provides the 
option of printing labels near adjacent edges. As was 
discussed previously, joint lines have unique shapes that 
does not match with wrong edges. These features help the 
user to assemble the panels without confusion. 

If users do not want these annotations to be engraved on the 
acrylic panels, they can still print them on paper and refer to 
them while assembling the panels without the annotations. 

 
Figure 7. Customization interface and instructions for users. 

 
Figure 6. Example usage of PUI layout managers. 
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Installing and Running Programs  
The final step is to install and run a program on the target 
platform. f3.js archives each project in TAR or ZIP format 
whose content can be directly executed on the target. 

The installation consists of downloading the archive file, 
transferring it to the target platform, optionally installing 
dependencies, and launching a daemon that continuously 
runs the program. All the steps can be handled by a single 
command-line tool (f3-projects) that can be installed on 
computers with a command of npm install -g f3js-cli. 
IMPLEMENTATION 
This section briefly describes the implementation of the f3.js 
design tool. It is a Web-based application consisting of a 
Web server and an HTML/JavaScript-based client. It can be 
accessed with any Web standard-compliant browser on a 
desktop computer, tablet, or smartphone. While f3.js helps 
with physical computing, it is a software solution and the 
hardware part is handled by existing printers and physical 
computing toolkits. 
f3.js JavaScript Interpreter 
The current implementation of f3.js can be used to develop 
JavaScript programs for a tiny computer or microcontroller 
that hosts a JavaScript execution environment called Node.js. 
It has a de facto standard module system called npm for 
loading packaged JavaScript libraries. 

The JavaScript source code in our design tool is utilized in 
two ways by running it on two separate interpreters, as shown 
in Figure 8. While one interpreter was implemented by us to 
run within the browser and render the hardware layout, the 
other was provided by third parties and embedded in the 
supported tiny computers and microcontrollers. JavaScript 
programming language was chosen because of its popular 
usage by interaction designers, its package manager npm is 
widely used to load drivers of sensors and actuators, and its 
high affinity with the Web technologies used for the 
implementation of our design tool. 

f3.js automatically executes the Node.js code with its own 
JavaScript interpreter after every edit on the code. While the 
interpreter is capable of running the source code written for 
microcontrollers, it does not load full npm drivers for sensor 
and actuator modules. Instead, when a driver class is 
instantiated, the interpreter returns a dummy object whose 
method calls nothing. As noted in the related work section, 
we intend to implement these methods in future work and 
simulate the behaviors of physical modules. 

Since the interpreter currently only collects information on 
hardware properties, it ignores exceptions, such as calling 
undefined functions. The execution times out after a certain 
period of time (500 ms) to keep the tool responsive and 
addresses user bugs and incomplete code that occasionally 
contains infinite loops. 
f3.js Sensors and Actuators Repository 
f3.js utilizes the metadata of sensor and actuator modules for 
various purposes. This subsection introduces where they are 
stored, what sort of modules can be registered, and how the 
information is utilized. 

Such metadata are not defined in the npm module and need to 
be independently stored in the repository in the f3.js Web 
server. The repository is shared among f3.js users, and any 
users (including non-programmers) can edit the metadata. 
While interaction designers can register their preferred 
sensors and actuators on the Website, those in the Grove 
system [31] are pre-registered. It is a modular system that 
does not require soldering and it supports various modules. 

Sensor and actuator modules need to be represented as npm 
packages (e.g., a serial camera driver jsupm_grovescam_js) or 
JavaScript classes defined in the packages (e.g., a 
temperature sensor driver GroveTemp class defined in a driver 
collection package jsupm_grove) for them to be registered. 
This one-to-one relationship between the class and the 
physical module allows the interpreter to accumulate the 
kinds and numbers of physical modules that are used when 
the code runs. 

After the code is executed, the interpreter has a reference 
from the instantiated JavaScript objects of modules drivers 
to their metadata. The metadata contain their shapes and 
names that allow a graphical preview to be provided and 
module names to be displayed in the development view. It 
also contains their support structures to enable screw holes 
that hold the modules and optional holes to be printed to 
expose modules or to enable cables to be inserted. This shape 
information is used for interference detection with other 
modules, which appears as a warning in the interface builder. 
The metadata further contain relevant uniform resource 
locators (URLs) such as the Websites of their manufacturers 
and distributors. 
USER STUDIES 
We conducted two user studies in different stages of 
developing f3.js. The first study was conducted to validate 
its potential and to assess its limitations by collecting a 

 
Figure 8. Single codebase runs on Web browsers for 
rendering and on microcontrollers for physical computing. 
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variety of applications that could be made with f3.js. The 
second study was conducted after revisions to check if the 
tool could help both interaction designers and end-users to 
explore variations in devices. 
First Study through Two Workshops 
We conducted two workshops in a series. The participants 
were a total of twenty-one people made up of five interaction 
designers and sixteen university students. 

Participants and Equipment 
The first workshop was held with five interaction designers 
working in the same research group as the present authors. 
Four of them had prior experience with physical computing 
and one did not. All of them had intense programming 
experience in JavaScript to create Web-based applications. 

The second workshop was held with senior university 
students who enrolled in a “User Interface” course. Sixteen 
students with varying levels of prior experience in 
programming (mean: 4.2 years and standard deviation (SD): 
3.14) and physical computing (twelve students had no prior 
experience) formed nine teams by themselves. Every team 
had at least one student who had sufficient expertise in 
programming to develop JavaScript programs. 

We provided the participants 1) access to the preliminary 
version of f3.js, 2) Intel Edison modules, 3) Grove modules 
compatible with Intel Edison (upon requests,) 4) acrylic 
panels to create enclosures, 5) screws to attach the modules 
on the panels, and 6) Grove cables with varied lengths to 
connect the modules. We also provided tools for them to 
create devices such as laser cutters and screw drivers. 

Workshop Procedure 
Each interaction designer and a group of students were asked 
to create their application with f3.js. First, they were given 
an introductory lesson on Intel Edison and f3.js for an hour. 
Then, they were given two weeks for implementation and 
device assembly. Finally, they submitted the outcomes as an 
archive of source code and demonstration videos and 
answered a questionnaire. 

Workshop Results 
All interaction designers and student groups successfully 
created their own physical computing devices. The GUI-like 
APIs were appreciated as they provided programming 
experience similar to that for GUI applications, enabling the 
enclosures to be designed by all participants including those 
without any prior use of CAD tools. They could iterate the 
prototyping process up to three times in two weeks by 
printing multiple variations of the enclosures. Multiple 

versions of the code (234 versions for 27 projects) were 
created, each of which represented a pair of the layout and 
program for the physical computing devices. 

Table 1 summarizes the results of the questionnaire that 
consisted of the mean, SD, and percentage of positive 
responses with scores >4 (Q1, 3, and 5) or <4 (Q2 and 4) on 
a 7-point Likert scale. The mean of every item denotes 
positive results. Most users considered f3.js to be useful and 
appropriate for creating devices (Q2 and 5). However, there 
were mixed feelings on usability (Q1, 3, and 4 with relatively 
large SDs). Six (Q1), six (Q3), and eight (Q4) out of 21 users 
awarded negative scores to these questions. 

Their answers to the free text question were analyzed to 
understand the reasons for these low scores. Many of them 
were found to share the same complaints about insufficient 
features. Please note that the requested features had already 
been implemented, were included in the prior explanation of 
f3.js, and were evaluated in the second study. 

First, most of them requested direct manipulation on the 
interface builder to eliminate the need to be concerned with 
concrete numbers that specified module locations. It is 
particularly cumbersome when there are multiple nested 
containers with transformation matrices. The current version 
enables drag-and-drop interaction by calculating the inverse 
matrix to obtain the relative movements of the modules and 
paths to their parent container. 

Second, five of them complained about the difficulty of 
assembling the laser-cut panels. This motivated us to provide 
support for the assembly process including the assignment of 
different joint shapes for each edge and the display of edge 
labels to identify edge correspondence. 

Third, four of them complained that it was tedious to 
manually download the archive file, extract the archive and 
transfer the files to the target platform. This is addressed by 
developing a command-line tool that automated the tasks. 
Second Study with Interaction Designers and End-users 
The second study was conducted after updating f3.js and it 
was aimed at investigating the iterative prototyping process 
by interaction designers and checking if the tool was usable 
by end-users to customize, assemble, and use devices. 

Participants and Equipment 
We asked three interaction designers who had participated in 
the first study as well as three end-users who had been newly 
recruited to use the f3.js design tool. All participations were 
voluntary who were free to leave at any time if they wanted. 
As with the previous study, we provided the f3.js design tool 
as well as all the hardware equipment required throughout 
the procedure. 

Study Procedure 
We asked the interaction designers to choose a favorite 
project, iteratively improve it, and expose parameters so that 
end-users could customize devices. We then interviewed 
them to obtain feedback. 

# Questions regarding f3.js design tool Mean SD % 
1 I would like to use it frequently. 4.62 1.53 12/21 
2 I found it unnecessarily complex. 2.38 0.79 20/21 
3 I thought it was easy to use. 4.48 1.53 9/21 
4 I needed technical support to use it. 3.62 1.68 10/21 
5 I thought it was suitable for creating devices. 5.71 1.03 19/21 
Table 1. Results from post-workshop questionnaire. (1 = strongly 

disagree and 7 = strongly agree) 
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After they had made revisions, we asked the end-users to 
customize, assemble, and use the devices. First, they were 
given an introductory lesson to use the f3.js Website for 15 
min. Then, they were asked to choose a favorite project, 
change the parameters, and provide us a list of modules and 
a PDF file of the enclosure layout. We played the role of a 
shop by providing the modules and laser-cut panels. Next, 
they followed dynamically-generated instructions. Finally, 
they assembled the devices and demonstrated their use, and 
we interviewed them informally about their experience. 

Study Results 
All interaction designers had no difficulty in revising the 
projects. We observed iterative cycles of 1) writing the code, 
2) customizing the parameters and assembling the device, 
and 3) installing and debugging the code within the device as 
their typical workflow. 

The first step was already effectively supported in the first 
user study, and there was a recurring result. The designers 
appreciated its immediacy for exploring variations in device 
enclosures with one stating: “writing the code and providing 
parameters produced the enclosure layout in no time with no 
explicit operations.” The layout manager API was 
effectively used to make the enclosure adaptable to changes 
in the device size and number of modules. 

The second and third steps were carried out more smoothly 
than in the first study, due to the newly implemented 
assembly support and the command-line tool. The third step 
was particularly interesting since its debugging process 
sometimes involved code edits outside f3.js. Several users 
edited the code with their favorite text-editor and upload it to 
the f3.js Website with the f3-projects command. This was 
the only behavior observed outside the f3.js design tool, 
which reflected requests for a debugger integrated in f3.js. 

The interaction designers typically parameterized features 
(e.g., sound on/off) during the prototyping process and types 
of similar sensors (e.g., slider or rotary sensors) to compare 
variations. Finally, they found some parameter values did not 
work well, and replaced the parameters with effective 
constant values. The lasting parameters made the devices 
adaptable to user environments and preferences. 

All end-users could customize and create devices with such 
parameters. They told us that f3.js was easy to use and 
customization was a delightful experience that gave them 
greater ownership of the devices. One user built project A 
(described in the next subsection) with four (three by default) 
buzzers. Another user built project D with a customized 
message of “Excellent!” The last user built project C in two-
player mode (one-player mode by default).  
Example Projects from Studies 
Figures 1 and 9 show photographs of five projects selected 
from the studies to showcase the variety of applications. 

A. QuadBuzzer is a musical instrument with one to four 
buzzers. It is connected to a host PC and creates sound 

according to user operations on the host. The enclosure is 
centrosymmetrical with curves and the buzzers are placed 
with the Circle layout.  

B. Music Kiosk plays musical melodies in synchronicity with 
another computer that is playing a music video uploaded to 
YouTube. The device enclosure uses the Line layout to place 
four equally-spaced LEDs in line. 

C. Card Matching Game allows a user to choose a number of 
players from one or two and changes the number of printed 
controllers, as well as the available game modes.  

D. Rhythm Game on a Drum is an interactive game that 
utilizes a sound sensor to detect a hit on the drum, which is 
made of a hand-crafted case. 

E. Translator is an arm-mounted device that uses a Web-
based translation API to translate text captured by a camera 
and presents the results on its LCD. 
DISCUSSION 
We will now discuss the validity of our approach, lessons 
learned, and future work based on the user study results. 
Creativity Support for Community of People 
While we played the role of shops during the user study for 
the end-users, our role can be substituted with online stores. 
Then, f3.js can be an open-source marketplace for physical 
computing devices with the capability of end-user 
customization. f3.js, TextAlive [15] (lyrics animations), and 

 
Figure 9. Projects selected from user study results. 
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Thingiverse Customizer [17] (3D models) are all Web-based 
creativity support tools for the community of people, and it 
would be interesting to investigate how these tools can be 
extended to foster further user collaborations.  

As noted in the related work section, we implemented 
various ideas from analysis on the Customizer [22]. Among 
other unimplemented ideas, enabling “remix” of projects 
(constructing a device with multiple features taken from 
existing devices) is non-trivial and interesting future work. 
Benefits of Code-centric Development of Devices 
Adapting to Changes – Changes in the device size and 
numbers and types of sensor and actuator modules often 
occurred during the exploration of design alternatives. The 
GUI-like APIs and layout managers could accommodate the 
changes without manually re-aligning the modules and paths. 
“They made the code clean,” an interaction designer 
appreciatively stated, “combined with the parameter tuning 
widgets, the APIs certainly helped the parametric design.” 

Layout managers in GUI toolkits play a similarly important 
role in the development process, but their role is slightly 
different from that in our case of PUI. While GUI benefit 
from layout managers to handle changes in window size 
during runtime, PUI do not change their shapes (except for 
emerging shape-changing interfaces [28]). PUI layout 
managers are primarily beneficial during the design process. 

Encapsulating Details – The APIs handle cumbersome 
details in the design process. For instance, an interaction 
designer considered “extruding support for 3D enclosures 
that produced multiple panels was helpful and far better than 
manually creating them.” A student appreciated that “the 
module types are automatically detected and opening the 
holes to hold them was as easy as one API call.” 

Standing on Top of Standards – Our APIs were built on top 
of an existing JavaScript ecosystem (npm package manager), 
and interaction designers and students could greatly benefit 
from the ecosystem. For instance, various projects used 
external npm modules to connect to the Internet and utilize the 
Web APIs (e.g., A, B, and E). 

Computational Design for Functionalities – The f3.js APIs 
could be extended to provide more computational design 
methods. For instance, PrintedOptics [38] utilizes acrylic 
panels with optical fibers as sensors and displays, and its 
design patterns can be encapsulated as additional APIs. 
Interface Builders that Complement APIs 
Bi-directional Relationship – The interface builder with the 
code editor was “an essential pair for the enclosure layout 
design.” Our result replicates the prior work emphasizing 
importance of the bi-directional editing between the code 
editor and interface builder [3,13]. 

3D Visualization – A student complained about the difficulty 
of imagining the resulting device in its 3D shape. Because 
the current implementation technically recognizes the 3D 

shape of the device being developed, its visualization should 
be feasible and will shortly be included in f3.js. 

3D Modeling – While the current implementation is limited 
to designing the completely planar PUIs, the proliferation of 
3D printers and various personal fabrication techniques 
highlight the importance of modeling freeform 3D objects in 
the process of PUI design. We plan to add support to 3D 
printers (producing 3D models instead of the development 
view for laser cutters) by providing APIs to design freeform 
3D models such as Shape.js [32]. Inspired by faBrickation 
[20] that combines LEGO® blocks with 3D printed objects, 
combining laser-cut panels with 3D printed objects would 
also enables cost savings and quick printings. 
Domain-Specific Language for Model-View Separation 
DSL vs Shallow Embedding – It was technically feasible to 
use a domain-specific language (DSL) to specify the device 
layouts. However, we adopted a shallow embedding 
approach (just providing APIs in the same programming 
language) because we assumed that it would eliminate 
learning costs, ease the management of design alternatives, 
and increase code interoperability. 

The results obtained from user studies mostly supported 
these assumptions. An interaction designer commented on 
the first two assumptions that “writing a single codebase to 
specify every aspect of the device was a very simple user 
experience.” Editing the code outside the f3.js IDE and 
copying it back to the IDE in the third step of the workflow 
required the third assumption of interoperability. 

Nevertheless, there was concern if this would scale to larger 
programs as “the code for model and view resides in the 
same place and could be messed up when the codebase 
increases.” “While the variable scope should be shared, it 
would be better if the code could be separated into two files.” 
Given that our APIs are used in building the COM, which is 
very similar to the document object model (DOM) in HTML, 
we could utilize similar languages for the COM. 

View Code for Physical Metrics-aware Applications – f3.js 
currently uploads the entire source code that contains the 
view part to microcontrollers. While it could be excluded in 
the uploading process, we left the code as it was for two 
reasons. First, the exclusion makes it impossible to recover 
the original source code, reducing the code interoperability. 
Second and more importantly, the view code in the 
microcontroller makes the application aware of its physical 
metrics. For instance, one can imagine that the application is 
aware of the distance between two ultrasonic sensors and is 
capable of estimating the position of an object. 
CONCLUSION 
We proposed the code-centric development of physical 
computing devices that enabled them to be parametrically 
designed – created with code and customized via GUI. Web-
based design tool, f3.js (http://f3js.org), was presented and 
evaluated through two user studies involving people with 
diverse technical background. 

http://f3js.org/
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