
VisionSketch:
Integrated Support for
Example-Centric Programming of
Image Processing Applications

Jun Kato1,2, Takeo Igarashi1

1The University of Tokyo
2National Institute of Advanced Industrial Science and Technology

Graphics Interface 2014 Session #5 “Video and Collaboration”



Cameras are ubiquitous

Interesting information
can be extracted

Interesting events
can be detected

Surveillance Time-lapse photography

Background

Surveillance camera image quoted from http://en.wikipedia.org/wiki/File:Three_Surveillance_cameras.jpg under CC BY-SA 3.0

2

http://en.wikipedia.org/wiki/File:Three_Surveillance_cameras.jpg


Programming is needed

Monitoring 24h/7days? Computers never get tired

Regarding the variety of desired information,
using preset programs is not enough.

BackgroundBackground

3



Programming is difficult

• Programming in general is to create abstract logic

• IDEs are equipped with textual interfaces

• Tuning algorithms takes long time by iterative cycle 
of changing code and restarting the program

BackgroundProblem

4



Example-Centric Programming

Programming should be easier

• Programming in general is to create abstract logic

• IDEs are equipped with textual interfaces

• Tuning algorithms takes long time by iterative cycle 
of changing code and restarting the program

Start off by choosing a concrete example

Get graphical feedback with help of the example

Update the program and get immediate feedback

Motivation

5



Integrated Support for
Example-Centric Programming

Canvas Visual Editor Code Editor

Demo

Goal:
Target apps: image processing applications (fixed viewpoint)

Method: provide three interlinked interfaces

address difficulties of current mainstream IDEs
by allowing programmers to…
• Start off by choosing a concrete example

• Get graphical feedback with help of the example

• Update the program and get immediate feedback

Our Approach

6



Subtext

Integrated support for
example-centric
programming
• allows to write

incomplete code
• as well as

concrete test code

[Edwards, OOPSLA Onward ‘04]

Designed for simple character-based applications
No graphical representations

Related Work

7



ConMan

VPL, casual program execution using recorded data

[Haeberli, SIGGRAPH ‘88]

Designed for tuning parameters of CG rendering
Mere visualization, no graphical editing

Related Work

8



DejaVu

Canvas interface for 
visualizing contents 
of any variables
• during execution
• after the execution

[Kato et al., UIST ‘12]

Designed for record & replay of program executions
No support for direct manipulation of graphics

Related Work

9



Preliminary user study

User Experience

Purpose:

• 5 male programmers with professional 
programming experience, aged 23-36

• 4 of them have used OpenCV for static 
image processing

Participants:

Procedures: • Pre-study questionnaire
• Work on a video (selected based on 

their interest) to create their own app 
• Post-study questionnaire and interview

• To collect user feedback and investigate 
applications and limitations

10



Example applications

Disc Jockey Analyzer

Door Watcher

Good-for-eating
Sensor

User Experience

11



Observations from the study
IDE + user code = application
• Normally: toolkit + user code = application
• Suitable for prototyping (programmer = user)
Many simple components > a few complex code
• When computational cost doesn’t matter…
• Preference for graphical operations over coding
Improvements on code editor needed
• Criticism on not providing graphical feedbacks
• Combination with past work (e.g. DejaVu) desired

User Experience

12



Limitations and Future Work
Technical limitations
• Images are assumed to be captured from static 

viewpoints but the system can be extended to 
handle dynamic viewpoints.

• Graphs with loops are not supported but can be 
supported.

Intrinsic limitation
• Example-centric approach cannot be applied to 

building apps with real-time feedback loops.

Conclusion

13



Integrated Support for
Example-Centric Programming
Proposed and evaluated design of VisionSketch IDE 
with three interlinked interfaces to aid example-
centric programming of image processing apps.

Canvas

For sketching 
program overview

Visual Editor

For drawing shapes to 
choose & tune algorithms

Code Editor

For writing code to 
implement algorithms

Conclusion

Open-source distribution for Windows & Mac OS X 
http://junkato.jp/visionsketch/

14

http://junkato.jp/visionsketch/


Appendix

15



Canvas

VisionSketch

Start off by choosing a concrete example

• Typical visual programming language but with 
graphical representations for all components

• Freeform comments sketched on the canvas

• Program execution casually 
controlled by the slider

Get graphical feedback with help of the example

Graphical user interface for
graphical overview

16



Visual Editor

• Parameter-based code completion (drawing shapes 
narrows down the list of applicable components)

Update the program and get immediate feedback

Graphical user interface for
choosing image processing
component and tuning its parameters

Start off by choosing a concrete example

• Interactive graphical feedback of processing results

VisionSketch

17



Code Editor

VisionSketch

Text-based code editor for
editing and creating image
processing components

Update the program and get immediate feedback

• Seamless switch between text and visual interface 
• Selective updates of corresponding components 

without restarting the whole program

18


	VisionSketch:�Integrated Support for�Example-Centric Programming of�Image Processing Applications
	Cameras are ubiquitous
	Programming is needed
	Programming is difficult
	Programming should be easier
	Integrated Support for�Example-Centric Programming
	Subtext
	ConMan
	DejaVu
	Preliminary user study
	Example applications
	Observations from the study
	Limitations and Future Work
	Integrated Support for�Example-Centric Programming
	Appendix
	Canvas
	Visual Editor
	Code Editor

