
VisionSketch: Integrated Support for Example-Centric Programming of
Image Processing Applications

Jun Kato, Takeo Igarashi – The University of Tokyo, Tokyo, Japan – {jun.kato | takeo}@acm.org

ABSTRACT
We propose an integrated development environment (IDE) called
“VisionSketch”, which supports example-centric programming for
easily building image processing pipelines. With VisionSketch, a
programmer is first asked to select the input video. Then, he can
start building the pipeline with a visual programming language that
provides immediate graphical feedback for algorithms applied to
the video. He can also use a text-based editor to create or edit the
implementation of each algorithm. During the development, the
pipeline is always ready for execution with a video player-like
interface enabling rapid iterative prototyping. In a preliminary user
study, VisionSketch was positively received by five programmers,
who had prior experience of writing text-based image processing
programs and could successfully build interesting applications.

Keywords: Image processing, computer vision, integrated
development environment, example-centric programming.

Index Terms: H.5.2. User Interfaces – GUI; D.2.6. Programming
Environments – Graphical Environments, Integrated Environments.

1 INTRODUCTION
Many surveillance cameras and other kinds of monitoring cameras
with fixed viewpoints are located almost ubiquitously around cities
and within buildings, recording what is happening there. Time-
lapse photography is also getting popular. Time-series photos taken
from a fixed viewpoint highlight processes that look subtle on an
ordinary time scale. It is possible to write a program that processes
these recordings, detects interesting events, and extracts useful
information from the real world with the help of software libraries
like OpenCV [1] that provide image processing algorithms. For
instance, it is possible to implement a program that monitors growth
of a fungus and notifies when it has grown enough to eat. It is also
possible to implement a program that monitors the rotation of a disc
on a turntable being scratched by a disc jockey and creates its
rotation-time graph. These examples are taken from the study
reported in Section 5.

The development of such programs in conventional text-based
integrated development environments (IDEs) involves two
distinctive challenges. As for the first challenge, the software
libraries provide various kinds of computer vision algorithms that
take an image as an input parameter. Their other parameters often
have visual meaning, such as four Point objects denoting a
rectangular area in the image. These parameters cannot or (at least)
are difficult to be specified in a text-based programming language.
Output from the algorithms is often also an image. Conventional
IDEs provide a text-based code editor and do not reflect such
graphical aspect of the program. As for the second challenge, when
it is necessary to monitor the behavior of the program, first, a
boilerplate code is written such as that for loading an image and
opening a window for visualizing the results. The code is then
compiled, and the program is executed. These steps are repeated

iteratively until the processing result is satisfactory. This repetition
takes long time and prevents fluent exploratory programming.

Provided the above-described issues, this paper aims to answer
the following research question: “How can an IDE made usable for
development of image processing applications?” Our hypothesis
was that an IDE that supports example-centric programming and
integrates graphical and text-based user interfaces is usable for such
purpose. VisionSketch IDE was developed to test the hypothesis
and is distributed as an open-source project [2]. It first asks the
programmer to select the input video to start the implementation.
The selected video serves as a concrete example with which
VisionSketch generates graphical feedback of the program to the
programmer. Working on a concrete example is a characteristic
shared with tools for end users capable of extracting information
from an example in a similar manner to ImageJ [3]. The difference
between VisionSketch and ImageJ is that the output of the system
is an executable pipeline rather than the extracted information.
VisionSketch can take another video source as an input to produce
new results, and newly defined components can be reused to build
another pipeline. Rapid prototyping tools for image processing,
such as Light Widgets [4] and Crayons [5], provide user interfaces
for tuning specific algorithms for extracting information and pass it
to external applications. Instead, VisionSketch makes it possible to
build general image processing pipelines. It is similar to DejaVu
[6] and Gestalt [7] in that it aims to facilitate the programmer’s
workflow with the help of graphical representations of example
data. Although VisionSketch is strongly inspired by these works, it
assigns a more proactive role to graphical representations. While
these systems merely use a text-based programming language,
VisionSketch uses both visual and text-based programming
languages to implement programs.

VisionSketch provides three interlinked interfaces (Figure 1): a
canvas for monitoring and editing the pipeline whose graphical
view is updated in real time during its execution; a visual editor for
choosing and setting up each image processing component, which
allows the programmer to draw shapes on the input image to narrow
down the list of applicable components, set up their parameters, and
immediately see the output of the component; and a text-based code
editor for editing the implementation of any image processing
component.

Figure 1. Overview of VisionSketch IDE.

LEAVE 0.5 INCH SPACE AT BOTTOM OF LEFT COLUMN
ON FIRST PAGE FOR COPYRIGHT BLOCK

2 RELATED WORK

2.1 Tool Support for Example-centric Programming
Early work on programming by demonstration includes systems for
example-centric programming such as Pygmalion [8]. Such
systems help a novice programmer to create programs with
concrete examples of input data. For instance, when the
programmer wants to implement a factorial function, he/she first
provides an example input (such as “6”) to the function. The system
then tries to execute the function until it reaches the end of the code,
where the further behaviour of the program is undefined. When a
new code snippet is input, the system tries to execute that code
again. This iterative process continues until the function returns a
concrete value, in this case, 720. VisionSketch also employs the
same example-driven development, where an example input to the
program is given prior to the implementation of the program.
Recent work on example-centric programming includes Subtext [9].
It provides a text-based code editor that allows the programmer to
write an incomplete definition of a function and test cases that call
the function with example input data. It automatically executes the
code and shows stack traces next to the code editor, highlighting
the incompleteness of the function definition. The programmer can
iteratively update the code and see stack traces generated by
executing the program with the example input for developing a
program. VisionSketch does not show much textual information
such as stack traces, but it does provide graphical representations
of the under-development program to aid program understanding.

Several attempts to enhance text-based IDEs with graphical
representations of example data have been made. For example, the
Barista framework [10] helps to implement structured editors with
graphical representations. For instance, it can be used to show a
multimedia comment of an image processing operation in which
images represent example input and output of the operation. Gestalt
IDE [7] is designed for machine-learning applications and includes
user interfaces for collecting, editing, learning, and testing
examples. Picode IDE [11] is equipped with a text-based editor
capable of showing inline photos representing posture data for
humans and robots. The photos serve as arguments to APIs for
processing posture data. Such concrete examples help the
programmer to understand the program. DejaVu IDE [6] is used for
developing interactive camera-based applications that add two
interlinked interfaces: timeline is capable of recording data input to
the program as examples and visualizing the history of the program
state during its runtime, and canvas is quite similar to our own
canvas interface in that it also provides real-time visualization of
the program status. The difference between the two versions of
canvas is that DejaVu’s canvas is mere visualization while our
canvas is a visual programming language that shows an editable
data-flow graph.

2.2 Visual Programming for Image Processing
Many visual programming languages (VPLs) only visualize the
structure of the program (i.e., not its contents.) VisionBlocks [12]
aims to allow end users to create their own computer vision
programs through GUI operations by a structured editor inspired
from Scratch [13]. VIVA [14] is a VPL that adopts a box-and-line
notation where each image processing component is represented by
a symbolic icon and is connected with other components by lines
to form a data-flow diagram. MATLAB/Simulink [15] is a
commercial VPL that supports various application domains
(including image processing). It has a built-in text-based code
editor with which a programmer can create a reusable processing
component. Some components visualize interesting data, but others
are just represented by text labels and symbols. On the other hand,

our canvas makes use of graphical representations to go beyond
symbolic notation.

Some existing VPLs add more meanings to their use of visual
components. For example, Agentsheets [16] provides a spreadsheet
interface, whose cell shows an interactive agent that reacts to user
input or information from other agents. ConMan [17] allows the
user to interact with each visual component and set up parameters
for rendering computer graphics. Its recorder interface is similar to
our video player-like interface in that they both allow the
programmer to control the program execution in a frame-by-frame
manner. There are two major differences from these VPLs to
VisionSketch. First, graphical representations in VisionSketch are
used to build programs while those in other systems are for tuning
parameters and visualizing results. Second, VisionSketch has an
integrated code editor to edit text-based implementation of each
component. This function ensures that new algorithms can be
implemented at any time without leaving the IDE.

These VPLs provide a live programming experience, eliminating
the gap between building and executing programs. When the
programmer edits the VPL, the program is updated without explicit
compilation operations and is always kept ready for execution.
VisionSketch also provides a live programming environment, but it
is a bit more involved since it integrates a text-based code editor.
When the text-based code is edited, it is automatically compiled
and loaded onto the program, replacing old components if any.

2.3 Tools for Image Processing
Cameras have become pervasive, and many tools to support
camera-image processing have been proposed. Their target users
range from end-users to novice and professional programmers.
Some of these tools do not require prior knowledge of image
processing algorithms. For example, Light Widgets is a system [4]
that detects areas of skin in the camera images. It transforms any
visible surface in everyday spaces into an interactive widget
controlled by hand gestures. Vision on Tap [18] adds simple image
processing features (such as motion detection) to a webcam video
stream and notifies the user of interesting events through a web
service. Crayons [5] allows a novice programmer to train a
classifier through painting example still images. The trained
classifier can later be called from the programmer’s own program.
Visual editor is inspired by the work. Eyepatch [19] is similar to
Crayons but operates on video, notifies events through a network
protocol, and provides multiple classifiers. While these tools
provide access to a limited set of image processing algorithms,
VisionSketch provides an IDE with which general image
processing applications can be built.

ImageJ [3] is a standalone GUI tool with which end-users can
apply image processing operations to images and videos. It requires
prior knowledge of such operations, but it is used by various
research projects in a broad area of natural science fields. With
ImageJ, the user can draw shapes on a source image to narrow down
the list of potential operations. This function is equivalent to our
component filtering method in visual editor. It is capable of
creating user-written macros and plug-ins, making the system look
more like a development environment. The differences between
ImageJ and VisionSketch comes from their different scopes. That
is, ImageJ is a tool capable of scripting, while VisionSketch is an
IDE that integrates graphical operations. For instance, the user
interface for annotating the input image by drawing shapes is used
for image processing operation by ImageJ and for adding a new
node of a visual programming language by VisionSketch.

OpenCV [1] is a software toolkit that provides a collection of
computer vision algorithms. ImageJ can also be used as a Java
library. These toolkits provide well-designed APIs to support

writing text-based code. The present work focuses on providing
broader support for the entire workflow of the programmer.
VisionSketch contains a Java wrapper of OpenCV as its default
library. Within VisionSketch, any OpenCV functions can be used
to implement a programmer’s own image processing components.

3 VISIONSKETCH IDE
VisionSketch is an IDE for developing image processing pipelines.
Design of VisionSketch benefits from the characteristics of the
supported applications. The applications deal with image
processing algorithms, which take an image or video (time-series
images) as input. Optional arguments usually have visual meaning,
such as four Point objects denoting a rectangular area in an image.
Outputs from the algorithms are also images, videos, or a group of
regions in the image. Conventional IDEs are usually equipped with
a text-based code editor and debugger, which cannot present such
data intuitively. It was therefore decided to implement the user
interface of VisionSketch from scratch in order to better reflect the
visual nature of the program.

VisionSketch has three interlinked components: the canvas and
visual editor interfaces are designed to support visual
programming; the text-based code editor interface is implemented
to preserve the full expressivity of text-based programming. These
interfaces for visual and text-based programming complement each
other to support the programmer’s entire workflow. Each interface
is described in the following three subsections, followed by a
concrete use case to describe how these interfaces help the
programmer’s workflow.

3.1 VisionSketch Canvas
Canvas is a visual programming environment in which each code
element is primarily represented by an image or video rather than
text (Figure 2). It is noteworthy that it is more visual than typical
visual programming languages such as VIVA [14] and
VisionBlocks [12], whose program structure is visually presented,
but data are referenced by text, including file names and constants.
It is the first interface that the programmer sees when opening the
VisionSketch IDE. It provides an overview of the program, and
although it looks like the canvas interface of DejaVu [6], it
represents a data flow of the program in the same manner as
ConMan [17] and VIVA [14].

 Canvas initially has one vacant box. The programmer clicks it
to choose the input data (such as a set of time-lapse photos, a video,
or live camera input). Then, he/she drags a line from an existing
box to another place to add a new box representing an image
processing component. When he/she clicks an existing box, visual
editor appears and allows the corresponding component to be
edited. He/she can also draw freeform lines to annotate the program.

Compared to a conventional text-based editor where statements and
line comments are all represented by text, VisionSketch shows a
box to represent one statement and freeform drawings to comments.

Canvas contains a playback interface in its bottom part. It allows
flexible control of program execution. With this playback interface,
the programmer can test the program with various input data in a
more casual way compared to conventional compile-and-run
operations, thereby accelerating the development process. While
DejaVu also provides a playback interface (named timeline), it is
used for navigating and replaying recorded sessions of program
executions. On the other hand, the playback interface of
VisionSketch is used for running the program by providing
example input data. Unlike general step-by-step navigation of a
text-based debugger, these playback interfaces are specialized for
image processing applications and allow frame-by-frame
navigation.

When the input data is obtained from a camera in real time, the
interface can only “play” or “pause” program execution. Frames
that arrive while being paused are discarded. Otherwise, when the
input data is from recorded photos or a video, the interface is also
capable of jumping to a specific frame of the photos or video, going
forward or backward for one frame, slowing down or speeding up
the execution, which is usually done at the original frame rate (such
as 30 frames per second). The “tape recorder” in ConMan has a
similar role driving the computer graphics rendering pipeline, but
it can only animate the computer graphics once (or forever in a
loop) and does not provide as fine granularity of control as our
playback interface.

3.2 Visual Editor
Visual editor is used to choose an image processing component and
specify its parameters. It visually shows input and output of the
component on its left and right side (Figure 3). It appears when the
programmer clicks an image processing component or a vacant box
before any component is assigned in canvas. With visual editor, the
programmer first specifies the region of interest (ROI) by drawing
shapes on the input image. Next, he/she can choose an image
processing component from a list of existing components that are
capable of processing the provided ROI. All the other components,
which cannot be applied to the ROI, are hidden for convenience.
Then, the processing result is immediately shown next to the input
image. If the processing result is not satisfactory, the ROI can be
edited or another component can be chosen. These operations take
immediate effect and provide graphical feedback. He/she can
alternatively switch to code editor to edit the implementation of the
current component or create a new image processing component
that takes the ROI of the input image as its parameter.

Figure 2. The canvas showing two algorithms in parallel.

Figure 3. The visual editor applying time-lapse operation.

Compared to general programs, image processing pipelines tend
to have components with the same or less variety of types of input
and output, which often represent images. In such a case, type-
based code completion of conventional IDEs do not help much in
filtering the components. Instead, VisionSketch uses parameter
information for the filtering, which consists of the ROI and the type
of the input image. The ROI is a collection of shapes drawn on the
input image. Currently, a shape is one of a circle, a line, or a
rectangle. The programmer uses a shape tool (one of the “circle”,
“line”, or “rectangle” tools) to draw a new shape or uses the
“remove” tool to remove existing shapes. Every time the ROI is
updated, the list is updated according to whether each component
is applicable to the current parameters or not. For instance, when a
circle is drawn on the input image, “linear polar conversion”
appears on the list since it can be applied to a circular area. To
support the parameter-based code completion, every component is
required to implement a static method to check if it is applicable to
the given set of parameters. In addition, when an image processing
component is selected, how the ROI can be edited is limited. For
instance, since “linear polar conversion” can only be applied to a
circle, the “line” and “rectangle” tools are hidden. Every
component is therefore also required to implement a static method
to check if each tool can be used in the current context.

While conventional IDEs force necessitate running the entire
program to see the result of a specific processing component,
VisionSketch has a built-in interpreter that is responsible for
keeping the image processing pipeline up-to-date. When a new
image processing component in visual editor is selected, the
interpreter instantiates the component, and sets up the instance by
calling parameterize(parameter) method of the component, where
parameter is a pair composed of the ROI and the input image. It
then immediately shows its processing results next to the input
image. The results are retrieved by calling calculate (image)
method of the component. Every time the ROI is updated, the
interpreter calls the parameterize and calculate methods again, as
well as the calculate method of the subsequent components in the
data-flow graph to update dependent components.

3.3 Code Editor
The text-based code editor is the last component used in the
programmer's workflow, but it is not the least important (Figure 4).
It allows the programmer to edit the implementation of any image
processing component used in the VisionSketch IDE. In addition to
the text-based code editor by which the programmer writes the
source code, the proposed editor includes several specialized
interfaces used to specify the component information used in visual
editor. They include text boxes for specifying its function name,
description, expressions (one returning acceptable input parameters

and the other returning available tools given the context
information), and a combo box for selecting an icon. At the bottom
of the code editor, an “update” button to save the current definition
and replace all the existing components in the image processing
pipeline with the updated version is provided.

As introduced in Subsection 3.2, code editor is shown when the
programmer is not satisfied with the current processing result.
Therefore, VisionSketch makes an assumption that the programmer
is focusing on implementing a function for processing the current
specific example rather than implementing general functions. It
provides more context-sensitive support for text-based
programming. In the current implementation of VisionSketch,
when a new image processing component is created, code editor
shows a template corresponding to the current ROI. For instance,
when the ROI is a circle, the default expression for defining
acceptable input parameters is set to “shapes.size() == 1 &&
shapes.iterator().next() instanceof Circle” checking whether the
ROI is a circle or not.

When the programmer changes the code, he/she clicks the
“update” button and goes back to visual editor, and the code is
automatically compiled and reloaded to the current program. This
process is technically called “hot swapping” of Java classes
supported by recent text-based IDEs. Compared to the general hot
swapping, the process of VisionSketch automatically feeds the
reloaded component with the image of the most recent frame in the
parent component. In this way, an up-to-date view of the image
processing results is always provided.

3.4 Example Use Case
To describe how the three above-described interfaces can help the
programmer in harmony, a concrete example use case is introduced
in the following scenario (Figure 5). Bob usually grinds coffee
beans, drinks a cup of espresso, and starts his work. He does not
know the right amount of coffee powder for one cup, but he thinks
he can estimate it by counting how many times he rotates the
grinder's handle. He wants to write a program that counts the
number of grinds, which applies several kinds of image processing
to a recorded video of him grinding the coffee beans.

First, Bob records a video of his hand grinding the handle and
loads it on VisionSketch IDE, which is shown as the source box.
He can change the source to another video or live input from the
camera at any time, but in this case, the loaded video will always
serve as the input data to the pipeline. Using canvas, he drags-and-
drops the mouse pointer from the source box to another arbitrary
place to create a vacant box.

Next, he clicks the vacant box to open visual editor and starts
choosing the image processing component. While canvas only
shows thumbnails of the videos in the boxes, visual editor renders
the video dot by dot. By playing the video in the editor with the
playback interface, he notices that there is a region in which his
hand crosses the same region once per rotation. The region is
usually shown as a black background, but when his hand crosses it,
its color prominently changes to that of his skin. He wants to create
a timeline where the change in the region over time is projected
spatially. To be more concrete, he wants to copy a line region in the
source image every frame and paste it into the resulting image at an
x-coordinate incremented every frame.

He starts drawing shapes to find the appropriate operation once
he knows what he wants to do. When he draws a line with the “line”
tool, such an operation (named “time-lapse”) is placed in the list of
predefined image processing operations that are applicable to the
line region. He clicks the button to instantiate the time-lapse
component. Then, he starts playing the video to cumulatively
update the resulting image, showing changes over time. Next, he

Figure 4. The code editor for editing image processing algorithm.

goes back to canvas and creates another vacant box for specifying
a subsequent operation. Navigating between canvas and visual
editor does not interrupt the video playback.

In the case of visual editor for editing the newly created vacant
box, the result of the time-lapse operation is treated as an input
image shown on the left side. He wants to perform a contour
counter operation on the input image since he thinks that the
number of closed regions in the time-lapse image represents the
number of grinds. However, he does not see the operation in the list,
since the source image for the contour counter operation needs to
be a single channel grayscale image or a binary image composed of
black or white pixels. He decides to apply a color filter operation to
create a grayscale image, where the skin color is highlighted in
white. He highlights some time points with the rectangle tool when
his hand is not crossing the line. By clicking the “color filter” button,
a color filter is created with the current image and the ROI as its
parameters. The resulting image is a grayscale image in which all
the crossings are painted in white and everything else in black.

It is not always the case that the desired operation is in the list of
predefined components. When the contour counter is applied to the
result of the color filter, it outputs a much greater number of
contours than expected. It seems that the result of the color filter
requires some noise reduction. No such predefined operation exists,
so he/she clicks the “new” button, which is the last button in the list
of components, inputs the name of the operation as “noise removal,”
and opens code editor to start the implementation of a new image
processing component. The code template is generated and
provided to reduce the time for writing the boilerplate code. It just
copies the source image to the resulting image by default, so it
needs to be changed to reduce the noise. Various ways to do that
are available, but simple erosion and dilation operations are thought
to be sufficient. He/she replaces the original line of code that copies
the image with a new line that calls up the erosion and dilation
operations provided by the OpenCV library.

Once coding is completed, the programmer clicks the “update”
button to save and compile the noise removal operation so it can be
used in visual editor. If a compilation error occurs, it is shown in a
message dialog. At that time, it is possible to go back to visual
editor without any error, and the stored noise removal operation can
be applied to the input image. It is noteworthy that the newly
implemented operation is loaded as a Java class of an image
processing operation. It runs reasonably fast for complex image
processing and is reusable, which usually cannot be achieved by
interpretive scripting languages.

If the programmer notices that the erosion operation is not
enough by seeing the result of the image processing operation in
visual editor, he goes back to code editor, changes some parameters
for the erosion, clicks the “update” button and navigates back to
visual editor to see the updated result, which is now satisfactory.
This iterative cycle is enabled by the built-in interpreter and hot-
swapping mechanism. Otherwise, it is necessary to compile the
entire program and execute it with the source video till the program
counter reaches the frame of interest. Such iterative process is
cumbersome and difficult without tool support.

Finally, the contour counter operation is applied to see all the
crossings highlighted in the resulting image with the total number
of crossings shown below. While every image processing
component is expected to return an image as a result, it can
optionally return other values that are visualized in visual editor
and can be retrieved by the child components for further processing.
While VisionSketch currently supports numerical values and text
for this optional visualization, its architecture is extensible enough
to support other types of data for visualization.

4 IMPLEMENTATION
VisionSketch is an attempt to tightly integrate visual and text-based
programming in one IDE. Since recent open-source IDEs that do
the same kind of integration could not be found, it was necessary to
build the IDE from scratch with help of existing low-level
components such as a Java compiler, a library that implements
image processing algorithms, and a text-based code editor with
support of syntax highlighting and other convenient features. Its
open-source distribution [2] is helpful for understanding the details.

4.1 Overview
VisionSketch runs on a computer that hosts a Java VM and the Java
wrapper of the OpenCV [1] library. It currently supports both 32-
bit and 64-bit Windows, Mac OS X, and common Linux
distributions. It requires a video source to work on (Figure 6). The
programmer can use recordings or connect to a camera device to
retrieve images in real time. VisionSketch is also capable of
periodically receiving images from a smartphone running the
Android OS or an Internet-protocol camera.

Figure 5. The pipeline created in the example use case.

Figure 6. Input implementations and supported hardware setup.

In its current implementation, VisionSketch has five predefined
image processing components as shown in Figure 7, whose details
are available online [2].

4.2 VisionSketch Visual Programming Language
Canvas is a visual programming environment that graphically
shows the image processing pipeline and allows it to be edited. It
has a built-in interpreter that controls the execution of the pipeline.
The pipeline is a directed graph without any loops, i.e., a tree whose
nodes are represented by an instance of Stmt class (where Stmt
stands for statement). Each Stmt instance can have one or more
child Stmt instances. The processing result of the instance is passed
to the children as their input. Multiple children allow the
programmer to compare alternatives and help him/her find the best
algorithm. A Stmt instance always has one parent Stmt, except for
a subclass instance (called Input), which is the root node in the tree
and provides input data to the pipeline.

There are currently four implementations of Input: VideoFile for
loading a video file, ImageDir for loading image files in a specified
directory, Camera for retrieving images from a camera in real time,
and HTTPServer for receiving images posted from external
programs through the HTTP 1.0 protocol. There are currently two
client implementations: one for periodically posting photos from a
smartphone, and another for bypassing images from an Internet-
protocol camera. When the root node is a VideoFile or ImageDir
instance, the execution of the pipeline can be thought of as moving
the cursor from the beginning to the end of the input set. In this case,
the programmer can freely move the cursor to any arbitrary frame.
Such a seeking operation is not supported by the other
implementations (including Camera and HTTPServer).

All Stmt instances except Input are associated with an image
processing component that is an instance of the algorithm-specific
class that extends the Function abstract class. Function provides the
parameterize(parameter) method, where parameter is an instance

of the FunctionParameter class that holds a pair composed of the
ROI and the image. The ROI is a set of shapes, each of which is a
Shape instance. There are currently three subclasses of Shape: Line,
Rectangle, and Circle. For instance, when the programmer draws a
line on the input image, a Line instance is instantiated and added to
the ROI. Then, parameterize method is called once upon the
instantiation of the Function class when the component is selected
in visual editor. It is also called whenever the programmer edits the
shapes and updates the ROI. When the parent Stmt provides a new
input image, calculate(image) method is called to calculate the
output. For instance, ColorFilterFunction provides a color filter
based on the histogram back projection. Its parameterize method
calculates histogram from the ROI of the image and its calculate
method calculates the back projection of the histogram to the
current image. Through calls to these two methods, pixels in the
current image with similar colors to the ROI of the parameter image
are painted in white.

4.3 Integration of Visual and Text-based Programming
Visual editor is the user interface that bridges the gap between the
visual and text-based programming languages. It allows the
programmer to instantiate a Function instance, set up its parameters,
and make it ready for use in the VisionSketch visual programming
language. It also allows him to switch to the code editor to edit its
text-based definition.

Implementation of an image processing component is not only
responsible for processing images but also for showing and hiding
relevant information in visual editor. For instance, when visual
editor generates the list of Function subclasses, it filters the list by
checking whether each subclass accepts the current set of
parameters or not. Buttons in the list for instantiating Function
instances have their own icons and text labels. Once the Function
instance is created, some shape tools may be disabled to prevent
ROIs from being invalid for the image processing. To show and
hide these information, a FunctionTemplate subclass is defined as
a singleton for each Function subclass. For instance, a ColorFilter
class extends a FunctionTemplate abstract class and implements
methods such as getName() and getIconFileName(), providing
meta information about a ColorFilterFunction class.

With code editor, the programmer can edit the meta information
as well as the implementation of a Function subclass representing
an image processing algorithm. It is capable of Java syntax
highlighting, code folding, and other basic features. While the
Function implementation is directly saved as a Java source code,
the meta information is saved as an XML file. When the
programmer clicks the “update” button, the meta information is
exported as a class definition that extends the FunctionTemplate
class and is compiled with the Function implementation by a Java

bytecode compiler.
When code editor updates the definition of an existing image

processing component, it first needs to unload the old Function and
FunctionTemplate implementations from the virtual machine. First,
it replaces existing instances with dummy instances. Then, it
disposes the class loader that was used to load the old definitions.
Next, it instantiates a new class loader and loads newly compiled
Function and FunctionTemplate implementations. Finally, it
replaces the dummy instances with the new Function instances. It
also invokes their parameterize(parameter) and calculate(image)
methods to automatically update the view of visual editor and
canvas. With these dedicated support functions, the programmer
can seamlessly switch between the visual programming and the
text-based programming.

Figure 7. Predefined image processing components.

5 USER EXPERIENCE
A preliminary user study was conducted to collect user feedback
about VisionSketch and investigate its applications and limitations.

5.1 Setting
Five male participants, aged 23-36 years old (mean: 29.6 years old,
standard deviation (SD): 4.40 years), were recruited for the study
in a university laboratory of computer science. They all had
professional programming experience, building applications for
commercial and research purposes. They had basic knowledge of
the Java programming language which is used in code editor. They
also had prior experience of building image processing applications.
Four of them had used OpenCV [1] for the purpose. Their uses of
OpenCV vary from color reduction and beautifying photos to edge
detection from a static image. While we did not conduct a
comparative study against another IDE, we chose the participants
with such experience and asked them to compare the VisionSketch
experience with their past experience throughout the study.

The user study consisted of four parts. First, the participants
answered a demographic questionnaire asking their age, sex, and
prior experience with programming and computer vision libraries.
Then, they watched a demonstration of the VisionSketch IDE, as
introduced in Subsection 3.4. Next, they were provided with five
pre-recorded videos which we thought interesting events could be
detected; they were also allowed to bring an interesting video or
use a webcam to retrieve a live video input to work on. Among
these vide sources, each of them chose favourite one and used the
IDE to implement an application. Finally, when they were satisfied
with the processing results of their applications, they answered a
post-experimental questionnaire.

5.2 Observations and User Feedback
All participants successfully created their own applications in one
to two hours. The post-experimental questionnaire contained four
common questions about each interface. The results are listed in
Table 1, consisting of the mean, standard deviation, and percentage
of positive responses (>4 on a 7-point Likert scale) for each
question. We also asked to write down concrete comments on each
interface. Some of the representative answers are quoted below.

The participants appreciated the example-centric workflow of
the VisionSketch IDE that “gives immediate graphical feedback
concerning the program being developed.” Canvas and visual
editor were favored by all participants (Q1), thought to be simple
enough (Q2) and easy to use (Q3). It is “very convenient since I
could see the up-to-date overview at a glance.” In addition, “the
playback interface in the canvas allows me to control and monitor
the execution interactively. It was very nice.” The shape tools in
visual editor “provide immediate graphical feedback of the ROI
tuning.” One participant answered that visual editor was not simple
(Q2) because “it takes time to find a graphical way to do something
I could do with text-based code.” He was used to low-level APIs of
OpenCV, and the graphical operation typically involves several

API calls. As a result, he felt overwhelmed. Another participant
commented that “existing IDEs force me to run the entire program
to see a small piece of interesting results, but VisionSketch allows
me to check it interactively without leaving the current context.”

All of the participants implemented new image processing
components with code editor. While they admit the necessity of
text-based programming to precisely control the algorithm logic,
they were observed to prefer to stay with visual programming. One
participant commented, “It would be nice if its usage could be
reduced, as the UI part is much better.” Another participant
demanded, “Code editor should come with more graphical
feedback, such as a live view of the processing results, as visual
editor does.” They sometimes utilized existing components and
avoided text-based coding (for a concrete example, see Subsection
5.2.3). Nevertheless, they appreciated the “update” button, which
“immediately makes the newly defined or updated component
available in visual editor and canvas.”

Hereafter, three applications developed by three participants in
the user study are presented to showcase the real use of the
VisionSketch IDE and investigate its capability and limitation
(Figure 8). Two applications developed by the other two
participants monitor traffic on a road and count the number of
visitors in a room, respectively. Their descriptions are omitted
because their usage patterns are included in the other applications.

5.2.1 Disc-jockey Analyzer
The participant retrieved a video file from an online video-sharing
website that records a live session of a professional disc jockey
from a ceiling-mounted camera. It is not easy for him to analyze
how equipment is manipulated by the disc jockey because it
contains various interfaces and the manipulation is often very quick.

To address this issue, he implemented an application with which
he can analyze the actions of the disc jockey. He created multiple
children of the video input to process multiple interfaces separately.
For instance, two branches count the number of discs used on each
turntable. Another two branches show the rotation of the discs as
vertical motions. When the disc is moving clockwise, the output
image scrolls down. Another branch monitors the slider’s knob for
controlling the left/right balance to create a time-balance graph. To
monitor disc rotations and volume changes, he used linear polar
conversion, perspective warp, and time-lapse components. To
count the number of discs used in the session, he used perspective

Question Canvas Visual editor Code editor
Mean SD % Mean SD % Mean SD %

1 I would like to use it
frequently. 5.80 0.74 5/5 5.80 0.74 5/5 3.20 1.17 3/5

2 I found it
unnecessarily complex. 2.00 0.63 0/5 2.80 1.33 1/5 3.80 1.72 3/5

3 I thought it was easy to
use. 6.00 0.63 5/5 5.60 1.02 5/5 3.40 1.02 2/5

4 I needed technical
support to use it. 3.00 1.09 2/5 3.60 1.50 2/5 5.00 1.26 4/5

Table 1. Results of questionnaire.

Figure 8. Applications developed by the participants.

warp, color filter, time-lapse, and contour counter components in
addition to a new component that takes the contour counter
component as its parent and displays the number of discs which is
incremented when the number of detected contours gets increased
and exceeds a specific threshold.

The participant looked surprised at the capability of the time-
lapse operation, with which he could create various meaning graphs.
He commented that the application is already very useful for
analysis of the actions of the disc jockey; however, for reproducing
the actions, he wants audio playback synchronized with the video.
While VisionSketch currently focuses on image processing, audio-
related feature is interesting future work.

5.2.2 “Good-for-eating” Sensor
The participant chose a set of time-lapse photos monitoring fungus.
Photos were taken every hour under a controlled lighting condition.
He wanted to create a program that analyzes the newest photo and
notifies him when the fungus has grown enough for eating.

To implement such a pipeline, he decided to measure the size of
the fungus area. When the size exceeds a specified threshold, the
user is notified. First, he seeks an image without visible fungus and
sets up the background subtraction component. When he played the
video, it made the fungus area look brighter than the other area.
Then, he implemented a binarization filter that binarizes each pixel
(paints it white if it is brighter than the threshold; otherwise, black).
To tweak the threshold, he switched seamlessly between code and
visual editor with help of the “update” button. Next, he found the
result a bit noisy. He implemented a median filter and inserted it
right before the background subtraction to successfully remove the
noise. Finally, he applied the contour counter operation, which not
only counts the number of closed regions but also counts their area
size. He added another component at the end that shows a coloured
circle (if the size is less than the threshold, red; otherwise, green).
When he switches the video source to the HTTPServer that receives
a new image every hour, the colour tells him whether the fungus is
good for eating or not.

He appreciated the visual editor’s capability to quickly switch
and test multiple image processing components, but he commented
that “Additional interactive GUIs for tuning other parameters
(such as numerical constants declared in the text-based code) are
desirable,” which was previously explored by Juxtapose [20].
Additionally, he commented that the current VPL is a bit too simple.
For instance, he wanted to output a grayscale image and use it as a
mask in another image processing component. This function
requires the capability of a Stmt instance to have two input sources.
While keeping the simplicity for usability is important, our future
work includes such extension of the VPL for better functionality.

5.2.3 Door Watcher
The participant wanted to be notified when the door of a room is
opened, so that he is not surprised by a sudden visitor. He first asked
his colleague to go in and out of the room to observe the door in the
real-time webcam images. Then, he noticed that the recorded video
is better than live input to prevent his colleague being bothered, so
he switched to the recorded video including his colleague’s action.
He knew that he could detect the event by applying a pattern-
matching algorithm, but he hesitated to use code editor and tried
using predefined components to find a solution; that is, he used a
combination of background subtraction, color filter, perspective
warp, and time-lapse components. At the end of the pipeline, he
added a new component that pops up a message dialog notifying
the user about the visitor. Since each component has full access to
the Java API, an original GUI can be easily added. For instance, a
slider interface may be provided for tuning a numerical parameter.

To get a satisfactory result, he tried various combinations of
image processing components, which were effectively supported
by the immediate graphical response. He commented that canvas
should show the text label for each component as well as the
graphical representation. When the pipeline grows large, mere
graphical information gets confusing since it often looks similar.

6 CONCLUSION
The proposed VisionSketch IDE has three interlinked interfaces to
facilitate example-centric workflow of building image processing
applications. Canvas and visual editor interfaces show graphical
representations of concrete examples to aid program understanding.
They also allow graphical operations such as drawing shapes on the
input image to choose and tune image processing components. The
text-based code editor is still needed to implement new algorithms
and needs interactive GUI support.

REFERENCES
[1] OpenCV. http://opencv.org/
[2] VisionSketch. http://junkato.jp/visionsketch/
[3] M. D. Abràmoff, P. J. Magalhães, and S. J. Ram. Image processing

with ImageJ. Biophotonics International, 11(7), pp.36–42, 2004.
[4] J. A. Fails and D. Olsen. Light widgets: interacting in every-day

spaces. IUI ’02, pp.63–69, 2002.
[5] J. A. Fails and D. Olsen. A design tool for camera-based interaction.

CHI ’03, pp.449–456, 2003.
[6] J. Kato, S. McDirmid, and X. Cao. DejaVu: integrated support for

developing interactive camera-based programs. UIST ’12, pp.189–196,
2012.

[7] K. Patel, N. Bancroft, S. M. Drucker, J. Fogarty, A. J. Ko, and J.
Landay. Gestalt: integrated support for implementation and analysis
in machine learning. UIST ’10, pp.37–46, 2010.

[8] D. C. Smith. Pygmalion: an executable electronic blackboard. In
Watch What I Do: Programming by Demonstration, pp.19–49, 1993.

[9] J. Edwards. Example centric programming. ACM SIGPLAN Notices,
39(12), pp.84–91, 2004.

[10] A. J. Ko and B. A. Myers. Barista: an implementation framework for
enabling new tools, interaction techniques and views in code editors.
CHI ’06, pp.387–396, 2006.

[11] J. Kato, D. Sakamoto, and T. Igarashi. Picode: inline photos
representing posture data in source code. CHI ’13, pp.3097– 3100,
2013.

[12] A. Bendale, K. Chiu, K. Marwah, and R. Raskar. VisionBlocks: a
social computer vision framework. IEEE SocialCom ’11, pp.521–526,
2011.

[13] J. Maloney, M. Resnick, N. Rusk, B. Silverman, and E. Eastmond.
The Scratch programming language and environment. ACM TOCE,
10(4):16, 2010.

[14] S. L. Tanimoto. VIVA: a visual language for image processing.
Journal of Visual Languages and Computing, 1(2), pp.127–139, 1990.

[15] MATLAB/Simulink. http://mathworks.com/products/simulink/
[16] A. Repenning and W. Citrin. Agentsheets: applying grid-based spa-

tial reasoning to human-computer interaction. IEEE VL ’93, pp.77–82,
1993.

[17] P. E. Haeberli. Conman: a visual programming language for
interactive graphics. SIGGRAPH ’88, pp.103–111, 1988. ACM.

[18] K. Chiu and R. Raskar. Computer vision on tap. IEEE CVPR
Workshops, pp. 31–38, 2009.

[19] D. Maynes-Aminzade, T. Winograd, and T. Igarashi. Eyepatch:
prototyping camera-based interaction through examples. UIST ’07,
pp.33–42, 2007.

[20] B. Hartmann, L. Yu, A. Allison, Y. Yang, and S. R. Klemmer. Design
as exploration: creating interface alternatives through parallel
authoring and runtime tuning. UIST ’08, pp.91–100, 2008.

http://opencv.org/
http://junkato.jp/visionsketch/
http://mathworks.com/products/simulink/

	1 Introduction
	2 Related Work
	2.1 Tool Support for Example-centric Programming
	2.2 Visual Programming for Image Processing
	2.3 Tools for Image Processing

	3 VisionSketch IDE
	VisionSketch Canvas
	Visual Editor
	Code Editor
	3.4 Example Use Case

	4 Implementation
	4.1 Overview
	4.2 VisionSketch Visual Programming Language
	4.3 Integration of Visual and Text-based Programming

	5 User Experience
	5.1 Setting
	5.2 Observations and User Feedback
	5.2.1 Disc-jockey Analyzer
	5.2.2 “Good-for-eating” Sensor
	5.2.3 Door Watcher

	6 Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType true
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU ()
 /JPN ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

