User Interfaces
for Live Programming

Jun Kato
https://junkato.ip
Researcher, zm<AAIST

‘‘‘‘‘‘‘‘‘‘‘‘ T e Y I
i FEFSSFS T
i e S ol O O
3 AR RS E A
C | [e e ——

LIVE 2017 Keynote, 10/24/2017

http://junkato.jp/

Jun Kato ‘ﬂﬂ@ junkato | https://junkato.jp

Research Topic

Computer Science (Human-Computer Interaction, Programming Language)

Picode It's Alive! VisionSketch TextAlive f3.js

{!l_'u - N
S8 Jemanstration

o >
robot . setPose(d) = Live programming e
=)

. i

’ Favigate ta code without

ACM DIS’12 ACM UIST'12 ACM CHI'13 ACM PLDI'13

 Created Tools and Environments for Creativity/Productivity Support

« Application Domains: Prototyping, Physical Computing, Computer
Vision, Robots, Internet of Things, Animation Authoring, ...

e Founded SIGPX (SIG on Programming Experience) https://sigpx.org/en

User Interfaces for Live Programming

https://junkato.jp/
https://sigpx.org/en/

Px

SIGPX

https://sigpx.org/en

A group of researchers/engineers/teachers in Japan, studying ...

-

Meet & Discuss |

BISIGPX [FUhIC

e T Laat 1 PagErey LGeravee

AL NS ANV RERRIEIA

(RN S
REZELP IRLA s |
e ilal bR & satiings

P (X) https://scrabbox.id/Prdgrammingme‘p-erié_nce/

@

it
v

15t meetup, 2/27/2016

PX Special Issue in IPSJ Journal (Nov 2017)

Publish ’
\o\ =TT '
‘ 675" ZIT% ::), : é A&’(- A\

Emerging Research on Programming Experience:
From Language Design to Industrial Applications

User Interfaces for Live-Programming

https://sigpx.org/en
https://scrapbox.io/ProgrammingExperience/

Today, I'm going to talk about ...

« What is Live Programming?

s for Live Programming with end-users

s for Live Programming of this material world
s for Live Programming with time travel

_ive Programming as User Interface research

It is about ... It is not about ...
« Showcase of user interfaces for programming e No A or greek symbols in slides
« Not only my work but also others’ notable work « Not a consensus in the field (it's ongoing!)

 Discussion on live programming system design « No peer review involved (my personal view)

User Interfaces for Live Programming

Today, I'm going to talk about ...

« What is Live Programming?

for
for
:Or

| Ive
| Ive

L lve

Programming with end-users
Programming of this material world

Programming with time travel

_ive Programming as User Interface research

User Interfaces for Live Programming

What is Live Programming?

« Programming experience
k « Continuous feedback
jumpCoeff = ;

Toop() { e Concrete information
if (s ing)
y += jumpCoeffy; e Early examples in VPL and OOP

« Attracting much attention these days

Not new but hot!

User Interfaces for Live Programming

Text-based Programming

Dartmouth BASIC Visual Studio Code

(L) Copyright Microsoft 1983,1984,1985,1986,1987 _ appis - textalive - Visual e =

60300 Bytes free I71ME) REE RIC) TRV Q) T/wJD) FRIM ANTH)

READ a1, A2, A3, A4

LET D = A1 = Ak - A3 = A2

IF D = 0 THEH &5

READ B1, B2

LET &1 = (B1=ad4 - B2 = A2) 7 D
LET K2 = (A1 = B2 - A3 = B1)/D
PRINHT X1, X2

GO0 TO 30

PRIHNT "HO UHIQUE SOLUTION®
OnTa 1, 2, &

oaTa 2, -7, 5

OaTa 1, 3, 4, -7

EHD

4 ALy
import as routes from './rc
4 TEXTAUIVE app.get("' routes.index)
12016"', routes.sm2016);
routes.search);
routes.about);

b Scripts
b stores

b test

routes.paper);
b views o o tes.profile);

.gitignore . i f e', routes.profileDelete);
= htpasswd . , routes.profileDelete);

IS app.js routes.profileMerge):
S app.ts y—=F 1: powershell
IS config.js

o Windows PowerShell

config.ts Copyright (C) Microsoft Corporation. All rights reserved.

¥ Gruntfilejs
{} package-lockjson PS C:\Users\arc\Documents\Source\textalive\nodejs\textalive> D

-5.5
-6BG6OGT 1666667
-3.666667 3.833333
Out of DATA in 30
ok

{} package.json
i) README.md
refs.d.ts
= textalive.njsproj
» DOCKER
P GITLENS
Pdev © Q04O < JunKato, 2 months ago 1716, 46 A/X—Z:2 UTF-8withBOM CRLF TypeScript 253 4 TSLint

« Text-based editor
e Text-based debugger
 Text-based ...

With some exceptions ...

Interface Builder

« A tool for NeXT Ul
development

e Later integrated
into Xcode

« Many IDEs have
similar built-in
tools

User Interfaces for Live Programming

Visual Programming

ConMan ‘} T

1]] l; |
Haberli| . |

 Mostly dealing with symbolic representations of programs
« Often considered as tools for novices and good for education
« Dataflow languages: early examples of live programming

User Interfaces for Live Programming

Character-based Uls or Graphical Uls?

LET %1 = (B1*A4 - B2 = Aa2) 7 D
LET %2 = (A1 = B2 - A3 = B1)/D
PRIMT %1, %2

G0 TO 30 e
PRINT “HO UMIQUE SOLUTION’ OtetE
DATA 1, 2, & or Wi Wk
DatTh 2, -7, 5 5
path 1, 3, &, -7 : }
EHD 1

(C) Copyright Micresoft 1983,1984 1985, 1986,1987 RS
60300 Bytes free | |
READ A1, A2, A3, A4 5 AT |
LETD = A1 * A4 - A3 = A2 “ input] wobj in LNt
IF D = 0 THEH &5 { ¢ output | “obj append | Do A
READ EB1, B2 TSR ~ ¢ 0bj out j K7 (: ._‘
p R4

waobj in kt
wried xfM

“ trin xfn
| trans xfn

bl

wa

#xfn out) rotate tr
) £ o TR Y ! { T

{ ,
| [|
{ |

|

rgns scale

5.5 i

.6666667 . 1666667 EREI
-3.666667 3.833333 Rl
Qut of DATA in 30 L] 1]

|
[
|
|
|

Live Programming as a hybrid approach

User Interfaces for Live Programming

User Interfaces with Text and Graphics

dummy contents
dummy contents
dummy contents
dummy contents
dummy contents
dummy contents
dummy contents

dummy contents
dummy contents
dummy contents
dummy contents
dummy contents
dummy contents
dummy contents
dummy contents
dummy contents
dummy contents
dummy contents
dummy contents

1 2
4 5
7 8

0

deamal den

s2 — post to wall
else

.
add, paste salact

N @ . .

box — set background(colorg — from rgb(0.698

. 0.098,

X — set 1 #b21900

#2785 post tc

Preset ﬂ

boxed

box — set

box— set
box — set 1
s2 — post !
N
true false pick color pas

o palawe e dip

N
not ; chrome [|

logical ragater Gats ¥t dwoevd Comcaner

sang slec PR Ourser e aurser

TouchDevelop

https://touchdevelop.com

User Interfaces for Live Programming

https://touchdevelop.com/

User Interfaces with Text and Graphics

= f3.j5 & loTavTFrYDiRE O ERiER P Y—3— R & BT

21
22
23
24
25
26
27
28
29
30
33!
32
35
34
35
36
37
38
o)
40
41
42

43-

44
45

Ar

var f3js = require('f3js"')
, X =1
> y =18
, useCountdown = true /* Use the countdown feature. */
, width = useCountdown ? 130 : 60
, height = 185
, thickness = 36 /* Thickness [10, 1e@] */
, dw =5 /* Joint width [@, 1@] */
, dh = 2 /* Joint height (panel thickness) [©, 18] */;

// put base board

var rect = f3js.drawlJointRectangle(x, y, width, height, dw
var planes = rect.extrude(thickness);

planes[4].x = width; planes[4].y = ©@; f3js.add(planes[4]);

// put sensors and actuators
var leftMargin = 28 // Left margin [@©, 1e@]

, topMargin = 3@; // Top margin [e, 1ee]
f3js.add(camera, { x: x + leftMargin + ©, y: y + topMargin
f3js.add(button, { x: x + leftMargin + ©, y: y + 75 });

var circle;

if (useCountdown) {
circle = new gcl.GroveCircularLED(5, 4);
f3js.add(circle, { x: x + width - 30, y: y + topMargin

I L TP RN [&S N, [S RN R I LYY

IR ¥ P S

© f3.js Project 2016 - @English

v = & e

° Q s ®| ED(5,4)

Camerall)

GroveButqu(S) T 11

‘ Use the countdown feature.

Thickness (26)

- U

Joint width (5)

n
Joint helght (panel thickness) (2) f3
Js

Left margin (28)

, http://f3is.org

User Interfaces for Live Programming

http://f3js.org/

Character-based Uls
and Graphical Uls

e [t’s like text and figures in
research papers

« Text is good at abstraction

« Graphics are good at
presenting concrete information

Integrated Graphical Representations

They complement each other

User Interfaces for Live Programming

Picode:
Inline Photos Representing Posture Data in Source Code

Jun Kato

Daisuke Sakamoto

Takeo Igarashi

The University of Tokyo. Tokyo. Japan — {jun.kato | d.sakamoto | takeo} @acm.org

ABSTRACT

Current programming environments use textual or symbolic
representations. While these representations are appropriate
for describing logical processes, they are not appropriate for
representing raw values such as human and robot posture
data, which are necessary for handling gesture input and

controlling robots. To address this issue. we propose Picode.

a text-based development environment augmented with
inline visual representations: photos of human and robots.
With Picode, the user first takes a photo to bind it to
posture data. She then drag-and-drops the photo into the
code editor. where it 1s displayed as an inline image. A
preliminary user study revealed positive effects of taking
photos on the programming experience.

Author Keywords
Development Environment: Inline Photo: Posture Data.

ACM Classification Keywords

H.5.2. Information interfaces and presentation (e.g.. HCI):
User Interfaces — GUI: D.2.6. Software Engineering:
Programming Environments — Integrated environments.

INTRODUCTION

A programming language 1is an interface for the
programmer to input procedures into a computer. As with
other user interfaces. there have been many attempts to
improve its usability. Such attempts include visual
programming languages to visualize the control flow of the
program, structured editors to prevent syntax errors, and
enhancement to code completion that visualizes possible
mputs [8]. However. programming languages usually
consist of textual or symbolic representations. While these
representations are appropriate for precisely describing
logical processes. they are not appropriate for representing
the posture of a human or a robot. In such a case, the
programmer has to list raw numeric values or to maintain a
reference to the datasets stored in a file or a database.

To address this issue, Ko and Myers presented a framework
called “Barnista” for implementing code editors which are
capable of showing text and visual representations [5]. This
framework enhances comments for an image processing

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish. to post on servers or to redistribute to lists, requires prior

Pose library

Figure 1. Overview of Picode

method by including an image that shows a concrete
example of what the method does. Yeh et al. presented a
development environment named “Sikuli.” with which the
programmer can take a screenshot of a GUI element and
paste the image into a text editor [12]. In Sikuli, the image
serves as an argument of the API functions. Our goal was to
apply a similar idea to facilitate the programming of
applications that handle human and robot postures.

We propose a development environment named Picode that
uses photographs of human and robots to represent their
posture data in a text editor (Figure 1). It helps the
development process of applications for handling gesture
mput and/or controlling robots. The programmer 1s first
asked to take a photo of a human or a robot to bind it to the
posture data. She then drag-and-drops the photo into the
code editor, where it 1s shown as an inline image. Our
environment provides a built-in API which methods take
photos as arguments. It allows the user to easily understand
when the photo was taken and what the code 1s meant to do.

RELATED WORK

After the Microsoft Kinect and its Software Development
Kit (SDK) hit the market. many interactive applications
have been developed that handle human posture. At the
same time. some toolkits and libraries have been proposed
that support the development of such applications. They can
typically recognize preset poses and gestures. When the
programmer wants to recognize her own poses and gestures.
however. she has to record the examples outside the
development environment. On the other hand. our
development environment 1s designed to support the entire

S FNR P NGRS E S SAY R e A et OOy TEgl) NSV AERSE S RS VS, e s ST R SR O s - gl =

In Live Programming systems, we ...

e first have vague ideas

 then explore the ideas with concrete examples
« gradually start turning the ideas into programs

Live Programming requires

decent Uls for exploring the problem space

User Interfaces for Live Programming

Uls for Live Programming should ...

« avoid sudden changes in the program behavior
« keep the program and its output relevant

« allow continuously exploring the problem space

Appropriate user interface design differs

from application to application

User Interfaces for Live Programming

Take-home message

When designing live programming systems ...

Don't be afraid to be domain-specific

 Good Ul is always specifically designed for the target domain

[t might be like replaying the history of end-user computing
in the domain of programming

« We might need PX workbench (cf. language workbench)

Cf. Programming eXperience Toolkit (PXT)
https://github.com/microsoft/pxt

User Interfaces for Live Programming

https://github.com/microsoft/pxt

Today, I'm going to talk about ...

 What is Live Programming??

 Uls for Live Programming with end-users

UJls for Live Programming of this material world
Uls for Live Programming with time travel

_ive Programming as User Interface research

User Interfaces for Live Programming

Uls for Live Programming

Good mixture of text-based and graphical user interfaces

Live Programming environme

jumpCoeff = 0.3; k

loop() {
if (isJumping)

y += jumpCoeff*v;

Programmer

User Interfaces for Live Programming

Uls for Live Programming

Why not expose GUI to users so that they can edit programs?

Live Tuning environmen

Source

Live Tuning

User Interfaces for Live Programming

Mode Switch between “Use” and “Build”

[3 start

& | & RESNHEFE | httpsy/lively-web.org/users/unknown_user/start.html

3} windows open search

Welcome to Lively Web, unknown_user!

= @ + b
config.js Menu @ Q

n\

-

-

~ module(users. unknown_us
(). toRun (function() {

1
2
3 lively.Config. set (' verboselogging’, true)
é 1) // end of module

er.config). requires Q

Pause button in TouchDevelop

(<lively.morphic Window#4E356...> config.js) H a IO in M orp h | C U |

What it we add another layer for users”?

Promoting universal usability with multi-layer interface design
Ben Shneiderman

User Interfaces for Live Programming

{4 PPAP | textalive.jp X WY

< C | @ textalivejp/videos/503
e

TextAlive [Songs [Videos <> Templates ¢ Edit #Llogin «Fullscreen @ Help~
. 4

TextAlive

http://textalive.jp

User Interfaces for Live Programming

http://textalive.jp/

Jun Kato

{fa) PPAP | textalive.jp X W\
s C | @ textalive,jp/videos/edit?id=503

TextAlive 2 B <« &sSave- & Options~ Marcedmz Fullscreen @ Help~

Parameter tweaking (1&Z X B0 &)

xze ([v
giEpadding (I 10
XFpadding (I 3

Fadein Time A 0

Fadeout Time | 0

Propose @ Programming ¢

lhaveapen,lh--- Uh!Applé

>

TextAlive

ey

Vol.

68.65s

v

http://textalive.jp/

Jun Kato

{fa) PPAP | textalive.jp X W\

C | @ textalive,jp/videos/edit?id=503 :
TextAlive 2 B <« &sSae~ & Options~ Marcedmz Fullscreen @ Help~
_. B v nos s ST s [L ~
38 var fadeout_progress = (p.endTime - now) / this.fadeoutTime; “
39 p.rendering.alpha = fadeout_progress;
40 }
41
42 var hrange = p.advance
43 + (p.wordCount - 1) * this.wpadding
44 + (p.charCount - 1) * this.cpadding;
45 var wx = (width - hrange) / 2;
46 var cx = 0;
a7 var w = p.firstWord;
48 ~ for (var i = @; 1 < p.wordCount; i++) {
49 w.rendering.tx.translate(wx, (height - w.height) / 2);
50 var ¢ = w.firstChar;
51
52 cX = 9
53 v for (var n = @; n < w.charCount; n++) {
54 c.color = this.textColor;
55 c.rendering.tx.translate(cx, e)ﬂ
56 cx += c.advance + this.cpadding;
57 c = c.next;
58 }
59 wx += cx + this.wpadding;
60 W = w.next;
61 }
62 s
63 }

lhaveapen,lh---

>

TextAlive

http://textalive.jp Y

Vol. | @008

3083s 68.655 _

http://textalive.jp/

Co-hosting Uls for

Simple spectral analysis

An illustration of the Discrete Fourier Transform
flty 2mi
Xe=Y ze ™ k=0,...,N-1
n=0
using windowing, to reveal the frequency content of a sound signal.

'We begin by loading a datafile using SciPy's audio file support:

In [1]: from scipy.io impert wavfile
rate, x = wavfile.read('test_mono.wav')

And we can easily view its spectral structure using matplotlib's builtin specgram routine:

In [2]: fig, (ax1, ax2) = plt.subplots(l, 2, figsize=(12, 4))
axl.plot(x); axl.set_title('Raw audio signal’)
ax2.specgram(x); ax2.set_title("Spectrogram'});

Raw audio signal Spectrogram
TR A

Literate Programming
in Jupyter (Ipython) Notebook

10000 20000 30000 40000 50000 R 10000 15000 20000

25

rogrammers and users

BallShooter | Picode

ngetch File View
’ Run
BallShooter
A Human
My NXT (MindstormsNXT) v|| Edit
= S A
=
if (pose.eq(¥d i
showText ("Got the command!") ;
nxt.setPose (;
} B4 v
@ Undo a Redo @ Capture ﬁ Delete
} 71 lines

User Interfaces for Live Programming

Inline Photos
in Picode

PN sketch-n-sketch v0.5.2

; Code Canvas
3 (def new (414 r [BLANK

4 (def er r bot] [left top right Run Code
5

6 (def s Revert

7 (let er ht bot] [left top rig

8 [(rectangle color 360 @ @ bounds) 1)) Undo | Redo
9

10 (def Clean Up
11 [(line lineZ_color line2_width left top right

12

13 (def ¢ Cursor
14 Qet [x2 y7] [C* 8.5! (+ left right)) (* 0.5¢ QN

15 [Cline lineZ_color line2_width Left bot x2 y2 Y
16 Oval Path
i; [Cgroup bounds (concat [rectl lineZ Lline3 13) 1) Poly Text
19 (blobs [" bounds. (

20 (withBounds [195 235 382 45¢]
21 (newGroupd 499 19 369))

22 (withBounds [43 65 187 222] (newGroupd 499 14 171)
23 (withBounds [157 39 446 123] (newGroup4 499 3 43))
24 (withBounds [48 329 168 464] (newGroupd 499 19 247
25 (withBounds [68 511 466 601] (newGroupd 499 19 311
26 (withBounds [215 145 278 205] (newGroupd 433 7 97)
27 (withBounds [333 151 436 23@] (newGroupd 499 7 265
28 (withBounds [411 349 462 432] (newGroup4 499 10 349

Sketch-n-Sketch, Hempel et al.

erging Uls for programmers and users
irect manipulation on program output

[Heuristics] Biased [Orientation] Vertical

count

grovs lint ungrous

Constealnt Options

name constraint 3

« 1 ||B
« -1

interpolate 0

0|00 @ %P7 [

constraints

[Ghosts] Shown [Out] Canvas

Para, Jacobs et al.

User Interfaces for Live Programming

Layers

o ® constraint -
o ® constraint (5]
O ® constraint 5}
fore——— —]
O ® st o
o ® path =)
O ® path m)
C ® path o
O M path o
o @ patn -
O ® path o
o ® path 0
o @ path 5]
0 ® 5]
® path]

o ® oam n

style

;.n ke
D wses [voouso 9

O

Stroke Weight
L
Paramaters

Save or Load » tile

download fk to desktop
upload e from desktop

wniondatie | Mo lechosen

Import or Export an SVG

exportavg
import 5VG desktop

uploada fle | ooy

Take-home message
When designing live programming systems ...

How about making the ladder of expertise?

 From live programming for programmers
e To live programming for the community of people

Use

n & BallShooter | Picode — @ IC =
Sketch File View »
Write code = :
- - e o <
Customize P e fem|
L, :;" p -’ e if (pose.eq (>)) | - A
. B B] - showText ("Got the command!"); =/ o
= : i _ |

constraints

Multi-layer

User Interfaces for Live Programming

Today, I'm going to talk about ...

 What is Live Programming??

« Uls for Live Programming with end-users

« Uls for Live Programming of this material world
e Uls for Live Programming with time travel

e Live Programming as User Interface research

User Interfaces for Live Programming

What is “live” and what not”

e System response time: * Reflex time:
« Computation « VVisual 0.2bs
 Network * Audio 0.17s
e Touch display response « Touch 0.15s
How Live are Live Programming * and more_
Systems? 3D printers and laser cutters
Rein et al. « Shape changing devices and robots

e Taste/smell interfaces

Various kinds of “latencies”

User Interfaces for Live Programming

Printing physical computing devices

£3.js |15 2017

Slow “framerates” prevent live feedback

User Interfaces for Live Programming

Slow display

Daniel Saakes et al.

Agile Fashion

Slow “framerates” can be useful, too

User Interfaces for Live Programming

Provide the source code of a microcontroller or tiny computer in JavaScript. Node.js-based computers are supported.

f3.s

</> Source Code

¢ Edit the project © Basic Information

</> Source Code & Design Alternatives

A 1 var WebSocket = require('ws');
2 var serverAddr = 'ws://192.168.10.100:8080/entry" ;|
3 var ws = new WebSocket(serverAddr);
4 var upmBuzzer = require('jsupm_buzzer');
5
6 var numBuzzers = 5; // Number of buzzers [1, 5]
7 var inputs = [3, 5, 6, 9];
8 var buzzers = [];
9 var volume = 0.1;
16 var r = 80;
11
12 var f3js = require('f3js');
13 var ¢ = f3js.createContainer();
14 c.x = 50;
15 c.y = 50;
16
17 var cl1 = 43
18 , €2 = 36
19 , X =70
20 , y = 140
21 , width = 70;
22 var a = c.createPath();
23
24 var ps = a.extrude(60);
25 ps[e].y = 50;
26 ps[@].x = 270;
27 f3js.add(nsl@l):
28 [-] [
» v f3.js: 10T apps with enclosures from single code base
30 -
n http://f3js.org
33 var cc = f3js.createContainer();
4 var nn = cc creataPath()

© f3.js Project 2016, 2017 - @A A:E

User Interfaces for Live Programming

/# Customization

Number of buzzers (5)

/ Layout view options

v

v

http://f3js.org/

@micro:bit B Projects &Q Share & Blocks {} JavaScript & o) o Microsoft

s=2 forever

Basic _
ring tone (Hz) Middle C

®© Input
@ Music

© Led
i Radii do | for ETTISEED from 0 to

-ll

do | for from @ to n

C Loops
X3 Logic
= Variables

B Math

I v Advanced

MakeCode for BBC micro:bit, Microsoft Research
http://makecode.microbit.org

® < Download blinkingJeds |nterfaces e Programming

http://makecode.microbit.org/

BallShooter | Picode

Picode: inline photos representing posture data in source code

 ——

| BallShooter \

if (pose.eq(L) i

showText ("Got the command!");

nxt.setPose (

v

| a Undo ‘ a Redo

71 lines User Interfaces for Live Programming

| @) Capture ‘ ﬁ Delete

Take-home message

When designing live programming systems ...

Deceiving users' perception is a good thing

* As long as the lie is reasonable
« The actual “framerate” can be very slow

 Emulating, or sometimes even pretending, is needed to
orovide the continuous feedback

Make full use of five senses in programming environments

User Interfaces for Live Programming

Today, I'm going to talk about ...

 What is Live Programming??

« Uls for Live Programming with end-users

« Uls for Live Programming of this material world
« Uls for Live Programming with time travel

e Live Programming as User Interface research

User Interfaces for Live Programming

“Live” is not always about “now”

« Uls for exploring and modifying the past
« Uls for predicting and choosing the future
« Absolute vs semantic timeline

ooooo

segmentationM... § & = e -~
;» T 5 ‘~ ‘: \ [~7>,%: 2., ‘%m
1 i i - "
| | i | 4

User Interfaces for Live Programming

WWIGOW L XamLOo w /A UCavu LallivVas g L
“% KinectDress.Windowl v H@ OnKinectFramesReady(object sender, Kinectl vJ s XL - [¥| Color] Depth [T] Skeleton [¥] Window -
| 36 = -
| 88 float sumDistance = @;
| 89 foreach (Joint joint in skeletonData.Joints) {
| 9@ sumDistance += joint.Position.Z; (3 :
| 5) KinectDress
| 92 float userDistance = sumDistance / 20;
| «.-. //If the user is close enough to the camera, show the vir
O] 95 bool userIsNear = userDistance < 2.5; ey
96 ShowStage(userIsNear); Color input Window output
| 5
98
99
:: - userDistance
« | m , ’ | _f;‘ Properties ' ¥% Classes ~ DejaVu Canvas r
DejaVu Timeline —
‘ w Refresh ‘ [b Play || I Stop | Speed: i Session 17 ﬂ | Session 17, 580 frames, 23 .005
T #H)|#32 764 %96 #128 #160 #1892 72
£ L) R 2.65s 387s 5155 6.36s 7.61s 88 | LIVE New session

Color — . — e a i = I
— - — B g ’ B . = 0 <. : -
- (T W T " = 'i o S e W S e ‘h

DejaVu v | e || v

KinectDress K

m

Windew1, xaml.cs ¢ ¥ |DejaVu Canvas ¥ 0 ¥

| “i KineetDress.Windowl * || # OnKineciFramesReady(abject sender, Kinectl » | rd < [¥iceler [T] Depth [Skeleton (V] Windaw
38 float sumDistance = @;
69 foreach (Joint joint in skeletonData.Jjoints) {
o0 sumDistance += jeint,Position,Zj (3
91 }
82 float userDistance = sumDistance / 28;
| 94 //If the user is close enough to the camera, show the vir
| 85 bool useriIsNear = userDistance < 3;
| a6 ShowStage(userIsNear) | Calar input Windoew output
| 97
10
160
1 ;-.j v uzerDiztance
« " . ’ E‘,_E'fepémes l-i";EC'IBSSEE — DejaVu Canvas = :
DejaVu Timeline ’ SER
-~ Refr{sh H Pla H . Sto ‘ Speed: Session 17 , "
[ELEN A By P g (Session 17,580 frames, 2200s
= 1 || #128 : #2256 ' : .
Ii’_ll =] R 5 15 7 61s 10.14s 15.1€ 7.82 LIVE New session

Color

»\’; %

KineclDress KineclDress

B Visionsketch - B n

Canvas £ save (1) Load

3

\\

TimelaP e
¥

aree: 18253
counls 27

A S)

Contour counter

Perspective warp

Color filter

VisionSketch

| N

_Stop || 44

“Live” is not always about “now”

e Uls for exploring and modifying the past
« Uls for predicting and choosing the future
« Absolute vs semantic timeline

User Interfaces for Live Programming

http://www.chris-granger.com/2012/04/12/light-table-a-new-ide-concept/

' ' | ' ' ’ | , ! ' ‘ ' | ' .] ' | '
User Interfa‘g fﬂ Live Programming Zd 0

7 L1
_ /f//.’//////;-//?z //J,/’/ /f /f-’//.';/;f‘/‘/_

°§

| E | @ P $ % A & * (N 1[2 = |t S

‘"I RRERRERERERNLRR et |1

- R R R ERERREEEEYE B2)N
i AR s DB F cl R 9 :

Caps Lock
S 8 % 3 i

Rktcr, McCann (TCHOVWV) (S-S VR ¥ B « Bl B

User Interfaces for Live Programming

“Live” is not always about “now”

e Uls for exploring and modifying the past
« Uls for predicting and choosing the future
« Absolute vs semantic timeline

User Interfaces for Live Programming

Absolute time vs semantic time

KinectDress

File Edit View Refactor Project Build Debug Search Analysis Tools Window Help
Windowlxamlcs < X |DejaVu Canvas
[% KinectDress Windowl ~ | OnkinectFramesReady(object sender, Kine = 7 D [¥] Color [C] Depth [¥] Skeleton [C] Window
79 foreach (Joint joint in skeletonData.Joints) { .
0 float d = joint.Position.Z;
sumDistance += d;
double averageDistance = sumDistance / 28; @

bool userIslear = averageDistance < 2.4;
ShowStage (userIsear);

<™ 10991, |True

handPosition

// Gesture recognition

Color input

double handPosition =
GetRightHandRelativePosition(skeletonData);

swiped

Q| 52 bool suiped =
93 DetectSwipeByPosition(handPosition); 1 888 F I
a1 Foﬁ‘c\-w\n . > alse
ol o5 double elbowangle = - ewiped
96 GetRightElbowAngle(skeletonData) ; Skeleton input L__chbowAnge | Eec.
e L_okeletoninput |
o) 98 bool swiped =
99 DetectSwipeByAngle(elbowangle); -

DejaVu Timeline

Speed: | | Gesture samples I

#160 | |3}1 92 #224 #256 #288 %320 #352 #384
6205 7455 8675 9925 11.13s. 12,35 13.60s 14.885
(i i i i i i it

|Gesture trial 1, 127 frames, 4.99s.

Color T Gesture trial 22, 511 frames, 19,805

| Session 38, 2706 frames, 4mS5453

LIVE New session

Ready In92 col18 ch9

TextAlive 2 B <« &save- @ Options~ Marcedmz “Fullscreen @ Help~

Slideln

Slide In / Word (id:343) Update & || Commit&d &

1+ function SlideInWord() {

2

3 this.name = "Slide In / Word";

4 this.type = PUBLIC | WORD; // assignable to phrases, public

5 var ke - require(“KaraokeColor™);

6 var ke_ = null;

7

8 // @ui Slider(100, 1600)

9 // @title Sliding Speed

10 this.headTime = 400;

11

12 // @ui Slider(a, 700)

13 [/ @title ICF & HE

14 this.position_y = height / 2;

15

16 // @ui Slider(d, 1024)

17 // @ritle XFHEHE

18 this.position_x - width / 2;

19

20 i Slider(®, 10)

21 itle XFB3E
i22 this.zoom = 1

23

24 i Check()

25 gritle T 5%
i26 this.from_bottom - false

27 -

28 L
C ght(c) 2015 A This software is re! under the MIT license @. P o Template
API ents when wiiting code

Parameter tweaking (Slide In / Word)

StcingSpeed (N

Phrase [WhentheSummerbreezesdancethroughtheflowers
word

Character

Graphic

vol. |24

Song [} | think of you

289.26s

TextAlive

User Interfaces for Live Programming

Take-home message
When designing live programming systems ...

Try providing good sense of time

e Enable time travel to find critical timings in the history
* Allow editing the code and program input to explore futures

. R
O

Replay&Refresh | “I\/I'érwWorI'ds” ” Timeline

Superspeed & slowmo Stroboscopic visualization for absolute/semantic time

User Interfaces for Live Programming

Today, I'm going to talk about ...

What is Live Programming?

S
S

S

:Or
:Or
'_'OI,

L lve
L lve

_lve

Programming with end-users
Programming of this material world

Programming with time travel

Live Programming as User Interface research

T EHEEXXNEXN
0 1 P 8

User Interfaces for Live Programming

Take-home message

_ive Programming research as
Jser |Interface research

* Don't be afraid to be domain-specific
« How about making the ladder of expertise?

« Deceiving users’ perception is a good thing
« Try providing good sense of time

't’s not only about language design,
a single user, a single Ul,
but about designing the whole experience

User Interfaces
for Live Programming

Jun Kato
https://junkato.ip
Researcher, zm<AAIST

vvvvvvvvvvvv T | -1“"'“ e, b b | B I
— kol ok kol okl o
GG
o m————

LIVE 2017 Keynote, 10/24/2017

http://junkato.jp/

References

1. Jun Kato, Masataka Goto, “f3.js: A Parametric Design Tool for Physical Computing Devices for Both Interaction
Designers and End-users", In Proceedings of the 2017 Conference on Designing Interactive Systems. pp.1099-1110, 2017.

2. Jun Kato, Masataka Goto, "Live Tuning: Expanding Live Programming Benefits to Non-Programmers", In Proceedings of
the Second Workshop on Live Programming Systems. 2016.

3. Jun Kato, Takeo Igarashi, Masataka Goto, "Programming with Examples to Develop Data-Intensive User Interfaces",

In Computer 49(7). pp.34-42, Jul. 2016. Special Issue on 21st User Interfaces.

4. Jun Kato, Tomoyasu Nakano, Masataka Goto, "TextAlive: Integrated Design Environment for Kinetic Typography",

In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems. pp.3403-3412, 2015. ACM CHI
2015 Best Paper Honorable Mention Award.

5. Jun Kato, Takeo lgarashi, "VisionSketch: Integrated Support for Example-centric Programming of Image Processing
Applications"”, In Proceedings of the 2014 Graphics Interface Conference. pp.115-122, 2014.

6. Sebastian Burckhardt, Manuel Fahndrich, Peli Halleux, Sean McDirmid, Michal Moskal, Nikolai Tillmann, Jun Kato, "It's Alive!
Continuous Feedback in Ul Programming", In PLDI '13: Proceedings of the 34th ACM SIGPLAN Conference on
Programming Language Design and Implementation. pp.95-104, 2013.

7. Jun Kato, Daisuke Sakamoto, Takeo lgarashi, "Picode: Inline Photos Representing Posture Data in Source Code", In CHI
'13: Proceedings of the SIGCHI conference on Human Factors in Computing Systems. pp.3097-3100, Apr. 2013. ACM CHI 2013
Best Paper Honorable Mention Award.

8. Jun Kato, Sean McDirmid, Xiang Cao, "DejaVu: Integrated Support for Developing Interactive Camera-Based Programs”,
In UIST '12: Proceedings of the 25th annual ACM symposium on User Interface Software and Technology. pp.189-196, Oct.
2012.

User Interfaces for Live Programming

