

Visionsketch: Gesture-based
Language for End-user Computer
Vision Programming

Problem and Motivation

An interactive touch surface is getting more and more

popular as the primary input source for computers,

including smartphones and tablet devices. Such devices

rarely come with a set of a mouse and keyboard,

making it difficult for the programmer to write code in a

traditional text-based development environment.

Meanwhile, there is an increasing demand on the use of

complex data types e.g. images, reflecting the increase

in computational power. Current programming

languages and development environments usually do

not have built-in support for such complex data types,

resulting in poor programming experience. In this

paper, we propose Visionsketch, a domain-specific

language for computer vision programming along with

its gesture-based development environment optimized

for a touchscreen.

Background and Related Work

TouchDevelop [1] enbraces the idea of using a

touchscreen as the primary input device to author code.

It introduces a new language and a context-dependent

software keyboard with large keytops. This is straight-

forward evolution of the text-based integrated

development environment (IDE). Such text-based

environment has difficulty in visualizing complex data

types. To address this issue, Active code completion [2]

proposes type-dependent interfaces to specify

parameters for the API (e.g. color palette for choosing

desired color). Sikuli IDE [3] provides a special text

editor that is capable of visualizing image data in the

code, which is passed as an argument of the built-in

API. While these IDEs still provide text-based editors,

our development environment puts more focus on

image data visualization and direct manipulation. It

actually does not need any text input.

Approach and Uniqueness

General programming languages are text-based, where

method names and arguments are represented by text.

On the other hand, our programming language deals

with computer vision algorithms, which take an image

or video (time series images) as input. Such data

cannot nicely be represented by text. Optional

arguments usually have visual meaning, such as four

Jun Kato <jun.kato@acm.org>

Affiliation: The University of Tokyo

ACM Member No.: 7960513

Address: Science bldg. 7, Room 302, The University of Tokyo,

7-3-1 Hongo, Bunkyo, Tokyo, 113-0033, Japan

Supervisor: Prof. Takeo Igarashi

PLDI 2013 SRC category: Graduate

Figure 1.

Overview of Visionsketch IDE

mailto:jun.kato@acm.org

Point objects denoting a rectangular area in the image.

Output from the algorithms are also images, videos, or

a group of regions in the image. To better reflect the

visual nature of this style of coding, we propose

Visionsketch, a “visual” programming language where

each code element is represented by an image or video

rather than text. Please note that it is different from

traditional visual programming languages whose

program structure is visual but data is still referenced

by text, including file names and constants.

In our development environment, the programmer first

needs an image or video to start programming. He can

also use live video data from a web camera. Then, he

does some gestures on the image or video to choose

possible operations and specify parameters in the

context instead of typing method names and

parameters. Once the details are fixed, the result

image or video from the operation is immediately

visualized. He can continue drawing gestures on the

result to author another code element.

Examples of the supported operations in the current

prototype implementation are listed in the left figure.

All features are implemented as Java classes and can

be easily extended by the Java programmer.

Results and Contributions

We created two example applications to see the

effectiveness of the Visionsketch language.

Use case 1 (one command): On a given table, I

would like to know the number of coins without having

to count them by myself. I just use my tablet device to

take a photo of the table, draw a circle containing one

coin. Then, other coins are highlighted in the photo

with the total number shown on the right side of the

window.

Use case 2 (sequential commands): I usually grind

coffee beans, drink a cup of espresso, and start my

work. I do not know the right amount of coffee powder

for one cup, but I think I can estimate it by counting

how many times I rotate the grinder’s handle. To count

the number of grinds, first, I record a video of my hand

and draw a line on the video where my hand crosses

once per one rotation. Next, a time-lapse image

appears on the right of the video. I open it and

highlight some timings when my hand crosses the line.

Then, other crossing points are also highlighted in the

image with the total number.

We asked two test users to implement these

applications. While one user was familiar with basic

programming concepts, the other did not know about

programming except for HTML.

In both cases, they succeeded in the implementation in

an hour, after fifteen minutes of introduction to the

basic usage of the development environment. The

programmer pointed out the similarity of the

Visionsketch environment and Instagram, a photo

editing tool. Indeed, we think the difference between a

programming environment and an end-user interface is

in its level of freedom. Designing user interface can be

even thought of as designing a domain-specific

programming language. The non-programmer

appreciated that she did not need to remember any

difficult words but just choose and test multiple tools to

find the proper solution. This preliminary result

highlights the benefit of direct manipulation with

intuitive gestures.

We are currently preparing the open-source distribution

of Visionsketch. Our future work includes support for

“if” statement which might be able to borrow some

ideas from a decision table of Subtext [4] or

conditionals of Substroke [5]. They both investigate the

possibility of rendering a programming language in the

two-dimensional space.

References
[1] Nikolai Tillmann, Michal Moskal, Jonathan de
Halleux, and Manuel Fahndrich. 2011. TouchDevelop:
programming cloud-connected mobile devices via
touchscreen. In Proc. of ONWARD '11. ACM, New York,
NY, USA, 49-60.

[2] Cyrus Omar, YoungSeok Yoon, Thomas D. LaToza,
Brad A. Myers. 2012. Active code completion. In Proc.
of ICSE '12. IEEE Press, Piscataway, NJ, USA, 859-869.

[3] Tom Yeh, Tsung-Hsiang Chang, and Robert C.
Miller. 2009. Sikuli: using GUI screenshots for search
and automation. In Proc. of UIST '09. ACM, New York,

NY, USA, 183-192.

[4] Jonathan Edwards. 2005. Subtext: uncovering the
simplicity of programming. In Proc. of OOPSLA '05.
ACM, New York, NY, USA, 505-518.

[5] Bret Victor. 2007. Substroke Design Dump.

http://worrydream.com/substroke/

