Jun Kato <i@junkato.jp>
Supervised by

Integrated Visual Representations for

0 I - Prof. Takeo Igarashi,
Programming with Real-world Input and Output T e

Background

Programs with real-world input and output
(1/0) have become popular.

Interactive image processing  Posture data processing Mobile robot control Robot posture control
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Our approacn: integrate graphical representations of the real world into text-oased IDEs
Existing approaches: Programming by Example is good for the end-user but not always the best for the programmer.

Text-based programming + external tools help the programmer but could be better when integrated.
Related work: Visual Programming focuses on new kinds of visualization of program code and data
while we investigate use of existing graphical representations: photos and videos.
So, how can we integrate graphical representations?
We model the program as follows and assign graphical representations to each component.
c: constants - static input to the program
out =f(m, C) where in, out: variables - dynamic input and output of the program
f: functions - specification of the program
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Videos for understanding dynamic behavior of the program (1) record example program execution (2) replay to review the execution
. : : , (3) rewrite code to update implementation
Graphical representations of variables, [Kato et al., UIST'12] (4) update results by re-executing the program with recorded data
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Annotations on photos & videos | g
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functions

(1) create an image processing component
by annotating example video input

(2) connect components to build a graph >%
and see it in action by playing the video Tordogse imege (M

(3) edit component implementation if needed |« « —— =

resultImage.release();

parameterize () ;
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cvResetImageROI (resultImage) ;

// Perspective warp

Future outlook

3D graphical representations, Multimodal programming, Everyone as a programmer, Liveness in programming
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