Jun Kato <i@junkato.jp>
Supervised by

Integrated Visual Representations for

0 I - Prof. Takeo Igarashi,
Programming with Real-world Input and Output T e

Background

Programs with real-world input and output
(1/0) have become popular.

Interactive image processing Posture data processing Mobile robot control Robot posture control

4) (])])

Emblem Continuous & Intermittent &
— g complex input simple input
Gulf of execution and evaluation in s @ @ Q@) o= D
programming has been deepened. e Y S
e @ @@
‘ @ 2 broil] <]

- J J
Programming With example data Development environment @Runtime environment Development environment @Runtime environment
iIs needed. Development of the programs with real-world 1/0 Development of the programs with conventional I/0
Our approacn: integrate graphical representations of the real world into text-oased IDEs
Existing approaches: Programming by Example is good for the end-user but not always the best for the programmer.

Text-based programming + external tools help the programmer but could be better when integrated.
Related work: Visual Programming focuses on new kinds of visualization of program code and data
while we investigate use of existing graphical representations: photos and videos.
So, how can we integrate graphical representations?
We model the program as follows and assign graphical representations to each component.
c: constants - static input to the program
out =f(m, C) where in, out: variables - dynamic input and output of the program
f: functions - specification of the program
=1 x |) Ballshooter | Picod o IEM

Photos for understanding static data used in the program || BT E
Graphical representations of constants, [Kato et al., CHI'13] |

showText ("Got thg

71 lines

, :) : : e (1) capture example postures (2) write code with the examples
environmental info nonverbal info emotional infe
Videos for understanding dynamic behavior of the program (1) record example program execution (2) replay to review the execution
. : : , (3) rewrite code to update implementation
Graphical representations of variables, [Kato et al., UIST'12] (4) update results by re-executing the program with recorded data
“‘ “‘-’a‘ [¥] Color [[] Depth [¥] Skeleton [¥] Window : ’ [; Refth b Pla y” B st p] Speed: . e ———
gf_;_m_’]@-h-fﬁ:tl b i:'_, . . e Ges e 08 e To%0s ks S0s ERTS) . Gesture trial #1, 127 frames, 4.99s

- iiii %\ L
1 NNNNNNNN“N“NN“NNNN“N\N\N\N\““NNNNNNNNN\“N“NNNN\N “NNNNNNN\

-
“ | m »] |

LIVE new session

9 foreach (Joint joint in skeletonData.Joints) { -
80 float d = joi .25
5 sundistance +
=)
2 A bool userIsliear = tance < 2.4; =
85 Shows:
3 - 86
© Lesturetrial #2, 511 frames, 19.80s e C
al= SN anvas
= o
z L_ﬁﬁsm-n 38, 2706 frames, 4m55.45s o| % bool uiped = » N
93 DetectSuipeByPosition(handPosition);
. o g: double elbowAngle =
%6 GetRightElbowAngle(skeletonData);
ol bool Sidped. =
Pes 0 99 DetectSwipeByAngle (elbowAngle); -
-
furthestDepth

Timeline

"
12 %
3
]
(=
[=]
=1
=
=
W
£

n EEE =S _oEN

Annotations on photos & videos | g
for specifying program behavior SRS, COFFRE FENS
Graphical representations of
functions

(1) create an image processing component
by annotating example video input

(2) connect components to build a graph >%
and see it in action by playing the video Tordogse imege (M

(3) edit component implementation if needed |« « —— =

resultImage.release();

parameterize () ;

C bl) 'P:h—cy—

ccccccccccc

cvResetImageROI (resultImage) ;

// Perspective warp

Future outlook

3D graphical representations, Multimodal programming, Everyone as a programmer, Liveness in programming

References

Jun Kato, Sean McDirmid, Xiang Cao, "DejaVu: Integrated Support for Developing Interactive Camera-Based Programs", In Proc. UIST '12, pp.189-196.
Jun Kato, Daisuke Sakamoto, Takeo Igarashi, "Picode: Inline Photos Representing Posture Data in Source Code", In Proc. CHI '13, pp.3097-3100.

